Article

Preparation and Application of Polydimethylsiloxane Encapsulated Graphene-based Flexible Infrared Detector

  • Zhao Yajing ,
  • Xie Liang ,
  • Ma Lanchao ,
  • He Junhui
Expand
  • a Functional Nanomaterials Laboratory, Center for Micro/nanomaterials and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    b College of Materials Science&Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
    c University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-10-22

  Online published: 2020-01-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21571182), the National Key Research and Development Program of China (No. 2017YFA0207102), the Science and Technology Commission of Beijing Municipality (No. Z151100003315018) and the Beijing "Practical Training Program".

Abstract

In this paper, we prepared reduced graphene oxide (rGO) films by first drop-casting graphene oxide (GO)/ethanol dispersion on top of silicon nanowires array, followed by thermal reduction in 95% Ar-5% H2 (volume ratio) atmosphere. A series of rGO thin films were prepared by thermal reduction at different annealing temperatures ranging from 100℃ to 1200℃, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, four-probe square resistance tester and scanning electron microscopy (SEM). The experimental results indicate that reduction of oxygen-containing groups, dehydrogenation of C-H groups and reconstruction of C=C skeleton occurred significantly on the GO plane. Compared with the insulating GO film, the resistance of rGO thin films decreases greatly, and the sheet resistance of rGO films shows a decreasing trend with increase of reduction temperature. Then, flexible polydimethylsiloxane (PDMS) encapsulated graphene-based devices (P-rGO-P) were fabricated by spin-coating PDMS on the surface of obtained rGO films with evaporated Au interdigital electrodes. The flexible devices maintained the integrity of the rGO films while providing self-supporting characteristics. The rGO film in the device had a clear layered structure, and a certain movable space between the upper and lower PDMS layers. This sandwich structure ensures that when the P-rGO-P flexible detector is bent and squeezed, the rGO film has sufficient buffer space, and would not be subjected to excessive stress arising from adhesion to PDMS. In short, the sandwich structure endows the originally fragile device with excellent flexibility. The P-rGO-P detector was successfully applied to detecting infrared laser irradiation, human body infrared radiation, bending motions and pressure changes. The experimental results showed that the flexible encapsulated P-rGO-P infrared detectors derived from the rGO thin films reduced at varied temperatures all had response to near-infrared (1064 nm) laser irradiation, and the maximum response reached up to 2.78 mA/W. In addition, the P-rGO-P flexible detector also demonstrated fast and sensitive response to human body infrared radiation and bending changes, and could maintain its integrity and responsiveness after repeated bending.

Cite this article

Zhao Yajing , Xie Liang , Ma Lanchao , He Junhui . Preparation and Application of Polydimethylsiloxane Encapsulated Graphene-based Flexible Infrared Detector[J]. Acta Chimica Sinica, 2020 , 78(2) : 161 -169 . DOI: 10.6023/A19100378

References

[1] Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Chem. Rev. 2015, 115, 10816.
[2] Ko, H. C.; Stoykovich, M. P.; Song, J.; Malyarchuk, V.; Choi, W. M.; Yu, C.-J.; Geddes III, J. B.; Xiao, J.; Wang, S.; Huang, Y.; Rogers, J. A. Nature 2008, 454, 748.
[3] Martyniuk, P.; Rogalski, A. Prog. Quantum Electron. 2008, 32, 89.
[4] Rauch, T.; Böberl, M.; Tedde, S. F.; Fürst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Nat. Photonics 2009, 3, 332.
[5] Rogalski, A.; Chrzanowski, K. Metrol. Meas. Syst. 2014, 21, 565.
[6] Lv, J. T.; Yang, L. J.; Li, Z. G.; Wei, Y. T.; Zhang, B. J.; Liang, L. Q.; Wang, F. W.; Si, G. Y. Acta Chim. Sinica 2013, 71, 1275. (吕江涛, 杨琳娟, 李志刚, 魏永涛, 张宝健, 梁丽勤, 王凤文, 司光远, 化学学报, 2013, 71, 1275.)
[7] Zhou, J. P.; Wu, B. G.; Zhou, Z. K.; Tian, J. W.; Yuan, A. H. Chin. J. Org. Chem. 2019, 39, 406. (周建平, 吴保庚, 周志宽, 田蒋为, 袁爱华, 有机化学, 2019, 39, 406.)
[8] Juang, F.-S.; Su, Y.-K.; Yu, H. H.; Liu, K.-J. Mater. Chem. Phys. 2003, 78, 620.
[9] Xie, C.; Yan, F. Small 2017, 13, UNSP 1701822.
[10] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[11] Wu, H.-Q.; Linghu, C.-Y.; Lu, H.-M.; Qian, H. Chin. Phys. B 2013, 22, 098106.
[12] Zhu, J.; Yang, X.; Fu, Z.; He, J.; Wang, C.; Wu, W.; Zhang, L. Chemistry 2016, 22, 2515.
[13] Gong, M.; Liu, Q.; Cook, B.; Kattel, B.; Wang, T.; Chan, W. L.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Z. ACS Nano 2017, 11, 4114.
[14] Haider, G.; Roy, P.; Chiang, C.-W.; Tan, W.-C.; Liou, Y.-R.; Chang, H.-T.; Liang, C.-T.; Shih, W.-H.; Chen, Y.-F. Adv. Funct. Mater. 2016, 26, 620.
[15] Manga, K. K.; Wang, J.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. Adv. Mater. 2012, 24, 1697.
[16] Dang, V. Q.; Han, G.-S.; Trung, T. Q.; Duy, L. T.; Jin, Y.-U.; Hwang, B.-U.; Jung, H.-S.; Lee, N.-E. Carbon 2016, 105, 353.
[17] De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K.; Kis, A.; Ferrari, A. C. ACS Nano 2016, 10, 8252.
[18] Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J. Small 2014, 10, 2300.
[19] Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel, R. Nature 2010, 466, 470.
[20] Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. J. Phys. Chem. C 2009, 113, 15768.
[21] Cao, Y.; Yang, H.; Zhao, Y.; Zhang, Y.; Ren, T.; Jin, B.; He, J.; Sun, J.-L. ACS Photonics 2017, 4, 2797.
[22] Cao, Y.; Zhu, J.; Xu, J.; He, J.; Sun, J. L.; Wang, Y.; Zhao, Z. Small 2014, 10, 2345.
[23] Yang, H.; Cao, Y.; He, J.; Zhang, Y.; Jin, B.; Sun, J.-L.; Wang, Y.; Zhao, Z. Carbon 2017, 115, 561.
[24] Huang, W.; Dong, X.; Cai, Y. Chin. Sci. Bull. 2016, 62, 635.
[25] Yan, S.; Zhang, G.; Jiang, H.; Li, F.; Zhang, L.; Xia, Y.; Wang, Z.; Wu, Y.; Li, H. ACS Appl. Mater. Interfaces 2019, 11, 10736.
[26] Sun, J.-L.; Zhang, W.; Zhu, J.-L.; Bao, Y. Opt. Express 2010, 18, 4066.
[27] Zheng, J.-G.; Sun, J.-L.; Xue, P. Chin. Phys. Lett. 2011, 28, 127302.
[28] Koppens, F. H.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nat. Nanotech. 2014, 9, 780.
[29] Ito, Y.; Zhang, W.; Li, J.; Chang, H.; Liu, P.; Fujita, T.; Tan, Y.; Yan, F.; Chen, M. Adv. Funct. Mater. 2016, 26, 1271.
[30] Bae, J. J.; Yoon, J. H.; Jeong, S.; Moon, B. H.; Han, J. T.; Jeong, H. J.; Lee, G. W.; Hwang, H. R.; Lee, Y. H.; Jeong, S. Y.; Lim, S. C. Nanoscale 2015, 7, 15695.
[31] Jiang, F.; Zheng, X. L.; Chen, L.; Hu, N.; Yang, J.; Liao, Y. J. New Chem. Mater. 2016, 44, 7. (姜帆, 郑小林, 陈礼, 胡宁, 杨军, 廖彦剑, 化工新型材料, 2016, 44, 7.)
[32] Cao, Y.; Zhao, Y.; Wang, Y.; Zhang, Y.; Wen, J.; Zhao, Z.; Zhu, L. Carbon 2019, 144, 193.
[33] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
Outlines

/