Review

Research Progress in the Stability of Inorganic Perovskite Solar Cells

  • Yang Ying ,
  • Lin Feiyu ,
  • Zhu Congtan ,
  • Chen Tian ,
  • Ma Shupeng ,
  • Luo Yuan ,
  • Zhu Liu ,
  • Guo Xueyi
Expand
  • a School of Metallurgy and Environment, Central South University, Changsha 410083;
    b Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083;
    c Hunan Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083;
    d First Rare Materials Co., Ltd, Guangdong 511500

Received date: 2019-11-22

  Online published: 2020-01-13

Supported by

Project supported by the National Natural Science Foundation of China (No. 61774169), Scientific Research Foundation for the Returned overseas Chinese Scholar; Postgraduate Independent Exploration and Innovation Projects of Central South University (Nos. 2019zzts944, 502211922).

Abstract

In recent years, the efficiency of perovskite solar cells has developed rapidly, but its stability is limited by the influence of heat, light and water. All-inorganic perovskite formed by inorganic cations instead of organic cations shows improved thermal stability, high light absorption and adjustable band gap. The photoelectric conversion efficiency of all-inorganic perovskite solar cells has been improved to 19.03% at present. Among them, CsPbI3 perovskite solar cells have good photoelectric performance but poor stability, while CsPbBr3 perovskite solar cells have excellent stability but poor photoelectric performance of devices. In this paper, the influence of preparation method, film doping and interface modification on the stability of inorganic perovskite solar cells is systematically summarized. The reasons behind the instability of inorganic perovskite and the improvement methods are emphatically analyzed. In conclusion, improving the stability of inorganic perovskite light absorbing materials by film doping, surface passivation and morphology control such as low dimensional materials preparation can effectively improve the stability of the overall device, which provides the basis for further commercialization. In addition, it is of great significance to study the theory of charge transfer and recombination and establish a complete theoretical system for improving the performance and stability of the device. At present, most of perovskite contains harmful elements Pb. How to replace Pb and find new materials applied in perovskite solar cells is also the future development trend. In a word, as a new type of solar cell, inorganic perovskite solar cell is expected to contribute to the photovoltaic development of the future society.

Cite this article

Yang Ying , Lin Feiyu , Zhu Congtan , Chen Tian , Ma Shupeng , Luo Yuan , Zhu Liu , Guo Xueyi . Research Progress in the Stability of Inorganic Perovskite Solar Cells[J]. Acta Chimica Sinica, 2020 , 78(3) : 217 -231 . DOI: 10.6023/A19110411

References

[1] Hodes, G. Science 2013, 342, 317.
[2] Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. J. Am. Chem. Soc. 2018, 140, 3825.
[3] Lee, M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2013, 338, 643.
[4] Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A. Nat. Photonics 2013, 7, 486.
[5] Guo, X. D.; Niu, G. D.; Wang, L. D. Acta Chim. Sinica 2015, 73, 211(in Chinese). (郭旭东, 牛广达, 王立铎, 化学学报, 2015, 73, 211.)
[6] Chen, X.; Xie, J.; Wang, W.; Yuan, H.; Xu, D.; Zhang, D.; He, Y.; Shen, H. Acta Chim. Sinica 2019, 77, 9(in Chinese). (陈薪羽, 解俊杰, 王炜, 袁慧慧, 许頔, 张焘, 何云龙, 沈沪江, 化学学报, 2019, 77, 9.)
[7] Yang, Y.; Chen, T.; Pan, D.; Zhang, Z.; Guo, X. Acta Chim. Sinica 2018, 76, 681(in Chinese). (杨英, 陈甜, 潘德群, 张政, 郭学益, 化学学报, 2018, 76, 681.)
[8] Wu, M.; Liu, S.; Chen, H.; Wei, X.; Li, M.; Yang, Z.; Ma, X. Acta Chim. Sinica 2018, 76, 49(in Chinese). (吴苗苗, 刘世强, 陈浩, 魏雪虎, 李洺阳, 杨志宾, 马向东, 化学学报, 2018, 76, 49.)
[9] https://www.nrel.gov/pv/assets/images/thumb-best-research-cell-efficiencies-190416.png accessed July 2019.
[10] Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16458.
[11] Aharon, S.; Dymshits, A.; Rotem, A.; Etgar, L. J. Mater. Chem. A 2015, 3, 9171.
[12] Fu, Y.; Zhu, H.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Wang, L. H.; Zhu, X.; Jin, S. Nano Lett. 2016, 16, 1000.
[13] Lee, J.; Kim, D.; Kim, H.; Seo, S.; Cho, S. M.; Park, N. Adv. Energy Mater. 2015, 5, 1501310.
[14] Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989.
[15] Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. Angew. Chem., Int. Ed. 2014, 53, 11232.
[16] Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. J. Phys. Chem. Lett. 2015, 6, 432.
[17] Hwang, I.; Jeong, I.; Lee, J.; Ko, M. J.; Yong, K. ACS Appl. Mater. Interfaces 2015, 7, 17330.
[18] Yang, Y.; Wang, W. J. Power Sources 2015, 293, 577.
[19] Yang, Y.; Chen, T.; Pan, D.; Gao, J.; Zhu, C.; Lin, F.; Zhou, C.; Tai, Q.; Xiao, S.; Yuan, Y.; Dai, Q.; Han, Y.; Xie, H.; Guo, X. Nano Energy 2020, 47, 104246.
[20] Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Sol. Energy Mater. 2016, 147, 255.
[21] Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Nature Energy 2016, 1, 16152.
[22] Kim, H. S.; Seo, J. Y.; Park, N. G. ChemSusChem 2016, 9, 2528.
[23] Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V. Acc. Chem. Res. 2016, 49, 330.
[24] Chen, Z.; Wang, J.; Ren, Y.; Yu, C.; Shum, K. Appl. Phys. Lett. 2012, 101, 093901.
[25] Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.
[26] Niezgoda, J. S.; Foley, B. J.; Chen, A. Z.; Choi, J. J. ACS Energy Lett. 2017, 2, 1043.
[27] Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A. J. Phys. Chem. Lett. 2017, 8, 67.
[28] Chen, C.; Lin, H.; Chiang, K.; Tsai, W.; Huang, Y.; Tsao, C.; Lin, H. Adv. Mater. 2017, 29, 1605290.
[29] Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H. J. Phys. Chem. Lett. 2017, 8, 2936.
[30] Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Nano Lett. 2017, 17, 2028.
[31] Wang, Y.; Liu, X.; Zhang, T.; Wang, X.; Kan, M.; Shi, J.; Zhao, Y. Angew. Chem., Int. Ed. 2018, 58, 16691.
[32] Liu, C.; Li, W.; Chen, J.; Fan, J.; Mai, Y.; Schropp, R. E. Nano Energy 2017, 41, 75.
[33] Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z.; Li, Y.; Liu, S. Adv. Energy Mater. 2018, 8, 1701757.
[34] Giustino, F.; Snaith, H. J. ACS Energy Lett. 2016, 1, 1233.
[35] Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Chem. Mater. 2016, 28, 284.
[36] Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Krol, R.; Moehl, T.; Gratzel, M.; Moser, J. E. Nat. Photonics 2014, 8, 250.
[37] Yang, W.; Noh, J.; Jeon, J.; Kim, Y.; Ryu, S.; Seo, J.; Seok, S. Science 2015, 348, 1234.
[38] Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Nat. Commun. 2018, 9, 2225.
[39] Yin, G.; Zhao, H.; Jiang, H.; Yuan, S. H.; Niu, T. Q.; Zhao, K.; Liu, Z.; Liu, S. Adv. Funct. Mater. 2018, 1803269.
[40] Chen, W.; Chen, H.; Xu, G.; Xue, R.; Wang, S.; Li, Y.; Li, Y. Joule 2018, 10, 011.
[41] Wang, Z.; Liu, X.; Lin, Y.; Liao, Y.; Wei, Q.; Chen, H.; Qiu, J.; Chen, Y.; Zheng, Y. J. Mater. Chem. A 2019, 7, 2773.
[42] Duan, J.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem., Int. Ed. 2018, 57, 3787.
[43] Yu, B.; Zhang, H.; Wu, J.; Li, Y.; Meng, Q. J. Mater. Chem. A 2018, 6, 19810.
[44] Cho, F. J.; Deng, X. F.; Ma, Q. S.; Zheng, J. H.; Jae, S. Y. ACS Energy Lett. 2016, 1, 573.
[45] Ma, Q. S.; Huang, S. J.; Wen, X. M.; Martin, A. G.; Anita, W. Y. Adv. Energy Mater. 2016, 6, 1502202.
[46] Lei, J.; Gao, F.; Wang, H. X.; Li, J.; Jiang, J.; Wu, X.; Gao, R.; Yang, Z.; Liu, S. Sol. Energy Mater. Sol. Cells 2018, 187, 1.
[47] Jae, K. N.; Sung, U. K.; Cha, W.; Choi, Y. J.; Kim, W. J. Nano Lett. 2017, 17, 2028.
[48] Guo, Y.; Zhao, F.; Tao, J.; Jiang, J.; Zhang, J.; Yang, J.; Hu, Z.; Chu, J. ChemSusChem 2018, 2, 690.
[49] Liang, J.; Zhao, P. Y.; Wang, C. X.; Wang, Y. R.; Hu, Y.; Zhu, G. Y.; Ma, L. B.; Liu, J.; Jin, Z. J. Am. Chem. Soc. 2017, 139, 14009.
[50] Yang, F.; Daisuke, H.; Gaurav, K.; Muhammad, A. K.; Chi, H. N.; Zhang, Y. H.; Shen, Q.; Hayase, S. Z. Angew. Chem., Int. Ed. 2018, 57, 12745.
[51] Duan, J.; Zhao, Y.; Yang, X.; Wang, Y.; He, B.; Tang, Q. Adv. Energy Mater. 2018, 8, 1802346.
[52] Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W. G.; Luo, J. S.; Daniel, P.; Seckin, A. Joule 2019, 3, 205.
[53] Cho, F. J. L.; Deng, X. F.; Zheng, J. H.; Kim, J.; Zhang, Z. L.; Zhang, M. J. Mater. Chem. A 2018, 6, 5580.
[54] Fai, C.; Lau, J.; Zhang, M.; Deng, X. F.; Zheng, J.; Bing, J. M.; Ma, Q. S.; Kim, J.; Hu, L.; Huang, S. ACS Energy Lett. 2017, 2, 2391.
[55] Li, Y.; Huang, Y.; Wei, J.; Liu, F.; Shao, Z.; Hu, L.; Chen, S.; Yang, S.; Tang, J.; Yao, J.; Dai, S. Nanoscale 2015, 7, 9902.
[56] Guo, X. Y.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D. Q.; Zhou, C. H.; Shen, J. Q.; Hong, J. B.; Yang, Y. Mater. Today Energy 2017, 5, 320.
[57] Zhang, Z.; Yang, Y.; Gao, J.; Xiao, S.; Zhou, C. H.; Pan, D. Q.; Liu, G.; Guo, X. Y. Mater. Today Energy 2017, 7, 27.
[58] Yang, Y.; Pan, D. Q.; Zhang, Z.; Chen, T.; Xie, H. Y.; Gao, J.; Guo, X. Y. J. Alloys. Compd. 2018, 766, 925.
[59] Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H. H.; Sun, Z. B.; Wang, J. H.; Zhou, C. H.; Wang, Y. W.; Guo, X. Y.; Chu, P. K.; Yu, X. F. Adv. Mater. 2016, 28, 8937.
[60] Yuan, H.; Zhao, Y.; Duan, J.; He, B.; Jiao, Z.;Tang, Q. Electrochim. Acta 2018, 279, 84.
[61] Yan, L.; Xue, Q.; Liu, M.; Zhu, Z.; Tian, J.; Li, Z.; Chen, Z.; Chen, Z.; Yan, H. Adv. Mater. 2018, 1802509.
[62] Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.;Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167.
[63] Yuan, H.; Zhao, Y.; Duan, J.; Wang, Y..; Ynag, X.; Tang, Q. J. Mater. Chem. A 2018, 6, 24324.
[64] Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345.
[65] Shen, E.; Chen, J.; Tian, Y.; Luo, Y.; Shen, Y.; Sun, Q.; Jin, T.; Shi, G.; Li, Y.; Tang, J. Adv. Sci. 2019, 1901952.
[66] Bai, D.; Bian, H.; Jin, Z.; Wang, H.; Meng, L.; Wang, Q.; Liu, S. Nano Energy 2018, 52, 408.
[67] Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218.
[68] Stoumpos. C. C.; Kanatzidis, M. G. Acc. Chem. Res. 2015, 48, 2791.
[69] Xiao, S.; Li, Z.; Guthrey, H.; Moseley, J.; Yang, Y.; Wozny, S.; Moutinho, H.; To, B.; Berry, J.; Gorman, B.; Yan, Y.; Zhu, K.; Al-Jassim, M. J. Phys. Chem. C 2015, 119, 26904.
[70] Duan, J.; Xu, H.; Sha, W.; Zhao, Y.; Wang, Y.; Yang, X.; Tang, Q. J. Mater. Chem. A 2019, 7, 21036.
[71] Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. Chem. Sci. 2016, 7, 4548.
[72] Ahmad, W.; Khan, J.; Niu, G. D.; Tang, J. Sol. RRL. 2017, 1, 1700048.
[73] Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688.
[74] Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Science 2016, 354, 92.
[75] Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Sci. Adv. 2017, 3, eaao4204.
[76] Wang, Q.; Jin, Z.; Chen, D.; Bai, D.; Bian, H.; Sun, J.; Zhu, G.; Wang, G.; Liu, S. Adv. Energy Mater. 2018, 1800007.
[77] Smith, L. C.; Hoke, D.; Solis-Ibarra, D.; McGehee, M.; Karunadasa, H. Angew. Chem., Int. Ed. 2014, 53, 11232.
[78] Luo, P.; Xia, W.; Zhou, S. W.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. J. Phys. Chem. Lett. 2016, 7, 3603.
[79] Wang, Y.; Dar, M. I.; Ono, L.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; Qi, Y.; Grätzel, M.; Zhao, Y. Science 2019, 365, 591.
[80] Fu, Y.; Rea, M. T.; Chen, J.; Morrow, D. J.; Hautzinger, M. P.; Zhao, Y.; Pan, D.; Manger, L. H.; Wright, J. C.; Goldsmith, R. H.; Jin, S. Chem. Mater. 2017, 29, 8385.
[81] Wang, Q.; Zheng, X.; Deng, Y.; Zhao, J.; Chen, Z.; Huang, J. Joule 2017, 1, 1.
[82] Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S. Nat. Commun. 2018, 9, 4544.
[83] Xiang, S.; Li, W.; Wei, Y.; Liu, J.; Liu, H.; Zhu, L.; Chen, H. Nanoscale 2018, 10, 9996.
[84] Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. ACS Energy Lett. 2017, 2, 2219.
[85] J ena, A. K.; Kulkarni, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Chem. Mater. 2018, 30, 6668.
[86] Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H. J. Phys. Chem. Lett. 2017, 8, 2936.
[87] Fu, L.; Zhang, Y.; Li, B.; Zhou, S.; Zhang, L.; Yin, L. J. Mater. Chem. A 2018, 6, 13263.
[88] Bai, D.; Zhang, J.; Jin, Z.; Bian, H.; Wang, K.; Wang, H.; Liang, L.; Wang, Q.; Liu, S. ACS Energy Lett. 2018, 3, 970.
[89] Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746.
[90] Li, W.; Rothmann, M. U.; Liu, A.; Wang, Z. Y.; Zhang, Y. P.; Pascoe, A. R.; Lu, J. F.; Jiang, L. C.; Chen, Y.; Huang, F. Z.; Peng, Y.; Bao, Q. L.; Etheridge, J.; Bach, U.; Cheng, Y. B. Adv. Energy Mater. 2017, 7, 1700946.
[91] Zeng, Z.; Zhang, J.; Gan, X.; Sun, H.; Shang, M.; Hou, D.; Lu, C.; Chen, R.; Zhu, Y.; Han, L. Adv. Energy Mater. 2018, 8, 1801050.
[92] Zeng, Q.; Zhang, X.; Feng, X.; Lu, S.; Chen, Z.; Yong, X.; Redfern, S. A. T.; Wei, H.; Wang, H.; Shen, H.; Zhang, W.; Zheng, W.; Zhang, H.; Tse, J. S.; Yang, B. Adv. Mater. 2018, 30, 1705393.
[93] Ma, Q. S.; Huang, S. J.; Wen, X. M.; Green, M. A.; Ho-Bailie, A. W. Y. Adv. Energy. Mater. 2016, 6, 1502202.
[94] Zhu, W.; Zhang. Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Adv. Energy. Mater. 2018, 8, 1802080.
[95] Jiang, Y.; Yuan, J.; Ni, Y.; Yang, J.; Wang, Y.; Jiu, T.; Yuan, M.; Chen, J. Joule 2018, 2, 1356.
[96] MØLler, C. K. Nature 1958, 182, 1436.
[97] Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.
[98] Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Zhu, H.; Xiao, C.; Yi, X. J. Am. Chem. Soc. 2016, 138, 15829.
[99] Li, Y.; Wang, Y.; Zhang, T.; Yoriya, S.; Kumnorkaew, P.; Chen, S.; Guo, X.; Zhao, Y. Chem. Commun. 2018, 54, 9089.
[100] Bai, D. L.; Bian, H.; Jin, Z. W.; Wang, H. R.; Meng, L.; Wang, Q.; Liu, S. Z. Nano Energy 2018, 52, 408.
[101] Zhang, Q.; Zhu, W.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. ACS Appl. Mater. Interfaces 2019, 11, 2997.
[102] Fu, Y. P.; Rea, M. T.; Chen, J.; Morrow, D. J.; Hautzinger, M. P.; Zhao, Y. Z.; Pan, D. X.; Manger, L. H.; Wright, J. C.; Goldsmith, R. H.; Jin, S. Chem. Mater. 2017, 29, 8385.
[103] Chen, Y. C.; Xiao, Y. Y.; Meng, Q.; Han, C. B.; Yan, H.; Zhang, Y. Z. Nano Energy 2020, 67, 104249.
Outlines

/