Article

O2/N2 Separation Performance of MIL-101(Cr)/Graphene Oxide

  • Liu Yang ,
  • Xia Xiaoxiao ,
  • Tan Yuanyuan ,
  • Li Song
Expand
  • a State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    b China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074

Received date: 2019-12-26

  Online published: 2020-02-24

Supported by

Project supported by the National Natural Science Foundation of China (No. 51672097) and the Double First-class Research Funding of China-EU Institute for Clean and Renewable Energy (No. ICARE-RP-2018-HYDRO-001).

Abstract

The pressure-swing adsorption (PSA) technology is the promising approach for O2/N2 separation because of its low cost and facile manipulation, in which adsorbents dominate the separation performance. In recent years, metal-organic frameworks (MOFs) have been recognized as the most potential adsorbents in gas adsorption and separation due to their ultrahigh surface area. In this work, MIL-101(Cr) with different weight percentages of graphene oxide (5%, 15% and 35%) was prepared by growing MIL-101(Cr) on pre-synthesized GO materials. The final product was activated under vacuum at 180℃ for 12 h. Structure characterization of different MIL-101(Cr)/GO composites revealed that MIL-101(Cr)/GO-15 with 15% GO additive exhibited the highest specific surface area (3486 m2·g-1) and pore volume (2.39 cm3·g-1) compared with pristine MIL-101(Cr) and the composites with 5% and 35% GO additives. The high surface area and pore volume are beneficial for the O2 uptake of MIL-101(Cr)/GO-15. Compared with the O2 uptake of MIL-101(Cr)/GO-5 (0.35 mmol·g-1) and MIL-101(Cr)/GO-35 (0.31 mmol·g-1), MIL-101(Cr)/GO-15 exhibited the highest uptake of 0.54 mmol·g-1. Further pore size distribution analysis demonstrated that the enhanced O2 uptake of MIL-101(Cr)/GO-15 can be ascribed to its increased fraction of mesopores. On the other hand, O2/N2 selectivity of different MIL-101(Cr)/GO composites was also calculated according to ideal adsorbed solution theory (IAST), from which it was found that MIL-101(Cr)/GO-15 displayed the highest O2/N2 selectivity (1.2) in a binary gas mixture with the volume fraction of O2/N2=1/4. Compared with pristine MIL-101, O2/N2 selectivity of MIL-101(Cr)/GO-15 was increased by 17.65%. Recyclability is one of the most important criteria to evaluate the gas adsorption performance of adsorbents. Therefore, the recyclability of MIL-101(Cr)/GO-15 was tested by measuring the O2 adsorption and desorption isotherms for three cycles. It was revealed that 80% of O2 uptake of MIL-101(Cr)/GO-15 was remained after three adsorp-tion/desorption cycles, implicating the outstanding recyclability of MIL-101(Cr)/GO-15.

Cite this article

Liu Yang , Xia Xiaoxiao , Tan Yuanyuan , Li Song . O2/N2 Separation Performance of MIL-101(Cr)/Graphene Oxide[J]. Acta Chimica Sinica, 2020 , 78(3) : 250 -255 . DOI: 10.6023/A19120449

References

[1] Townsend, J.; Braunscheidel, N. M.; Vogiatzis, K. D. J. Phys. Chem. A 2019, 123, 3315.
[2] Gulcay, E.; Erucar, I. Ind. Eng. Chem. Res. 2019, 58, 3225.
[3] Demir, H.; Stoneburner, S. J.; Jeong, W. S.; Ray, D.; Zhang, X.; Farha, O. K.; Cramer, C. J.; Siepmann, J. I.; Gagliardi, L. J. Phys. Chem. C 2019, 123, 12935.
[4] Zhang, W.; Banerjee, D.; Liu, J.; Schaef, H. T.; Crum, J. V.; Fernandez, C. A.; Kukkadapu, R. K.; Nie, Z.; Nune, S. K.; Motkuri, R. K.; Chapman, K. W.; Engelhard, M. H.; Hayes, J. C.; Silvers, K. L.; Krishna, R.; McGrail, B. P.; Liu, J.; Thallapally, P. K. Adv. Mater. 2016, 28, 3572.
[5] Zanota, M. L.; Heymans, N.; Gilles, F.; Su, B. L.; Frere, M.; De Weireld, G. J. Chem. Eng. Data 2010, 55, 448.
[6] Hejazi, S. A. H.; Rajendran, A.; Sawada, J. A.; Kuznicki, S. M. Ind. Eng. Chem. Res. 2016, 55, 5993.
[7] Bian, S. J. Liming Chem. Ind. 1993, 2, 14. (边守军, 黎明化工, 1993, 2, 14.)
[8] McIntyre, S. M.; Shan, B.; Wang, R.; Zhong, C. W.; Liu, J.; Mu, B. Ind. Eng. Chem. Res. 2018, 57, 9240.
[9] Tan, K.; Zuluaga, S.; Gong, Q.; Gao, Y.; Nijem, N.; Li, J.; Thonhauser, T.; Chabal, Y. J. Chem. Mater. 2015, 27, 2203.
[10] Verma, P.; Maurice, R.; Truhlar, D. G. J. Phys. Chem. C 2015, 119, 28499.
[11] Wang, Y.; Yang, J. F.; Li, Z. J.; Zhang, Z. M.; Li, J. P.; Yang, Q. Y.; Zhong, C. L. RSC Adv. 2015, 5, 33432.
[12] Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 304. (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 304.)
[13] Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 324. (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 324.)
[14] Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 786. (杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 786.)
[15] Li, Y. W.; Yang, R. T. Langmuir 2007, 23, 12942.
[16] Mu, B.; Schoenecker, P. M.; Walton, K. S. J. Phys. Chem. C 2010, 114, 6467.
[17] Southon, P. D.; Price, D. J.; Nielsen, P. K.; McKenzie, C. J.; Kepert, C. J. J. Am. Chem. Soc. 2011, 133, 10885.
[18] Murray, L. J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.; Brown, C. M.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 7856.
[19] Parkes, M. V.; Sava Gallis, D. F.; Greathouse, J. A.; Nenoff, T. M. J. Phys. Chem. C 2015, 119, 6556.
[20] Sava Gallis, D. F.; Parkes, M. V.; Greathouse, J. A.; Zhang, X. Y.; Nenoff, T. M. Chem. Mater. 2015, 27, 2022.
[21] Herrera-Rodríguez, F.; Martínez-Aguilar, E.; Guerrero-Sánchez, J.; Rodríguez, J. A.; Moreno-Armenta, M. G. Surf. Sci. 2019, 690, 121481.
[22] Yan, J.; Yu, Y.; Xiao, J.; Li, Y. W.; Li, Z. Ind. Eng. Chem. Res. 2016, 55, 11768.
[23] Petit, C.; Levasseur, B.; Mendoza, B.; Bandosz, T. J. Microporous Mesoporous Mater. 2012, 154, 107.
[24] Liu, P.; Yan, C. X.; Ling, Z. C.; Zhu, E. F.; Shi, Q. N. Mater. Rep. 2016, 30, 39. (刘朋, 闫翠霞, 凌自成, 朱恩福, 史庆南, 材料导报, 2016, 30, 39.)
[25] Jiang, M.; Li, H. Z.; Zhou, L. J.; Xing, R. F.; Zhang, J. M. ACS Appl. Mater. Interfaces 2018, 10, 827.
[26] Su, H.; Du, Y.; Zhang, J. C.; Peng, P. P.; Li, S. H.; Chen, P. W.; Gozin, M.; Pang, S. P. ACS Appl. Mater. Interfaces 2018, 10, 32829.
[27] Pokhrel, J. W.; Bhoria, N.; Anastasiou, S.; Tsoufis, T.; Gournis, D.; Romanos, G.; Karanikolos, G. N. Microporous Mesoporous Mater. 2018, 267, 54.
[28] Fu, D. Y.; Li, H. W.; Zhang, X. M.; Han, G. Y.; Zhou, H. H.; Chang, Y. Z. Mater. Chem. Phys. 2016, 179, 167.
[29] Zhou, H.; Zhang, J.; Zhang, J.; Yan, X. F.; Shen, X. P.; Yuan, A. H. Int. J. Hydrogen Energy 2015, 40, 12276.
[30] Zhou, H.; Liu, X. P.; Zhang, J.; Yan, X. F.; Liu, Y. J.; Yuan, A. H. Int. J. Hydrogen Energy 2014, 39, 2161.
[31] Sun, X. J.; Xia, Q. B.; Zhao, Z. X.; Li, Y. W.; Li, Z. Chem. Eng. J. 2014, 239, 228.
[32] Elsayed, E.; Wang, H. Y.; Anderson, P. A.; Al-Dadah, R.; Mahmoud, S.; Navarro, H.; Ding, Y. L.; Bowen, J. Microporous Mesoporous Mater. 2017, 244, 182.
[33] Liu, X. Q.; Zhou, H.; Zhang, Y.; Liu, Y. J.; Yuan, A. H. Chin. J. Chem. 2012, 30, 2564.
[34] Pourreza, A.; Askari, S.; Rashidi, A.; Fakhraie, S.; Kooti, M.; Alavijeh, M. S. J. Ind. Eng. Chem. 2019, 71, 311.
[35] Zheng, Y.; Chu, F. C.; Zhang, B.; Yan, J.; Chen, Y, L. Microporous Mesoporous Mater. 2018, 263, 73.
[36] Zhou, X.; Huang, W. Y.; Liu, J.; Wang, H. H.; Li, Z. Chem. Eng. Sci. 2017, 167, 99.
[37] Yan, J.; Yu, Y.; Ma, C.; Xiao, J.; Xia, Q. B.; Li, Y. W.; Li, Z. Appl. Therm. Eng. 2015, 84, 120.
[38] Petit, C.; Bandosz, T. J. J. Colloid Interface Sci. 2015, 447, 149.
[39] Myers, A. L.; Prausnitz, J. M. AIChE J. 1965, 11, 121.
[40] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
[41] Rallapalli, P. B. S.; Raj, M. C.; Senthilkumar, S.; Somani, R. S.; Bajaj, H. C. Environ. Prog. Sustainable Energy 2016, 35, 462.
Outlines

/