Communication

Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes

  • Zhang Ronghua ,
  • Xu Bing ,
  • Zhang Zhanming ,
  • Zhang Junliang
Expand
  • a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b Department of Chemistry, Fudan University, Shanghai 200438

Received date: 2020-01-21

  Online published: 2020-03-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21425205, 21672067, 21801078), 973 Program (No. 2015CB856600), and the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation (Nos. 2019M650071, 2019M661418).

Abstract

Optically pure pyrrolidine ring systems are core structural motifs found in a range of bioactive compounds, natural products, pharmaceuticals and catalysts. The synthesis of optically pure pyrrolidine ring systems is no longer mysterious as a great number of studies concerning the catalytic asymmetric 1,3-dipolar cycloaddition of iminoesters have been reported. Overall, the transition-metal-catalyzed asymmetric 1,3-dipolar cycloaddition of iminoesters with electron-deficient alkenes is one of the most powerful and straightforward synthetic tools for the optically pure pyrrolidines. However, high diastereo-and enantioselectivities are requested simultaneously during the synthesis of chiral substituted pyrrolidine and it still remains a big challenge to develop an efficient way to achieve both of them. Recently, we developed a novel chiral sulfinamide mono-phosphine (Ming-Phos) which performed well in copper-catalyzed intermolecular cycloaddition of iminoesters with β-trifluoromethyl β,β-disubstituted enones or α-trifluoromethyl α,β-unsaturated esters. Encouraged by the satisfying results, herein we report the Ming-Phos/Cu-catalyzed asymmetric intermolecular[3+2] cycloaddition of azomethine ylides with nitroalkenes. To our delight, a new Ming-Phos M3 bearing a trifluoromethyl showed good performance in this type of inter-molecular cycloaddition with high diastereo-and enantioselectivities (up to 13:1 dr, 98% ee and 95% yield). High efficiency, high diastereo-and enantioselectivity, a novel ligand, an inexpensive copper catalyst, and good functional group tolerance make it worth to be considered as an efficient, reliable and atom-economic strategy for the synthesis of optically pyrrolidines. The general procedure is as following:the solution of M3 (5.5 mol%) and Cu(CH3CN)4BF4 (5 mol%) in methyl tert-butyl ether (MTBE, 6 mL) was stirred at room temperature for 2 h. After the reaction temperature was dropped to -30℃, azomethine ylides 2 (0.6 mmol), Cs2CO3 (0.15 mmol) and nitroalkene 1 (0.3 mmol) were added sequentially. After the nitroalkene 1 was consumed completely, the solvent was removed under reduced pressure. The crude product was analyzed with 1H NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel to afford the desired product.

Cite this article

Zhang Ronghua , Xu Bing , Zhang Zhanming , Zhang Junliang . Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes[J]. Acta Chimica Sinica, 2020 , 78(3) : 245 -249 . DOI: 10.6023/A20010019

References

[1] For recent reviews and selected examples on the application of pyrrolidines in the natural products and biologically molecules, see:(a) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. Synlett 2004, 2670.
(b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139.
(c) Enders, D.; Thiebes, C. Pure Appl. Chem. 2001, 73, 573.
(d) Narayan, R.; Potowski, M.; Jia, Z. J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296.
(e) Kumar, I. RSC Adv. 2014, 4, 16397.
(f) Randjelovic, J.; Simic, M.; Tasic, G.; Husinec, S.; Savic, V. Curr. Org. Chem. 2014, 18, 1073.
(g) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodriguez-García, I. Chem. Rev. 2008, 108, 3174, and references therein.
[2] (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(b) Yu, J.; Shi, F.; Gong, L. Z. Acc. Chem. Res. 2011, 44, 1156.
(c) Han, M. Y.; Jia, J. Y.; Wang, W. Tetrahedron Lett. 2014, 55, 784.
(d) Zhang. R.; Xu, Q.; Shi, M. Acta Chim. Sinica 2012, 70, 1593. (张睿, 徐琴, 施敏, 化学学报, 2012, 70, 1593.)
(e) Wang, J.; Li, X.; Yuan, Q.; Ren, J.; Huang, J.; Zeng, B. Chin. J. Chem. 2012, 30, 2813.
(f) Wang, Q.; Chang, H.; Wei, W.; Liu, Q.; Gao, W.; Li, Y.; Li, X. Chin. J. Org. Chem. 2016, 36, 939. (王清宇, 常宏宏, 魏文珑, 刘强, 高文超, 李彦威, 李兴, 有机化学, 2016, 36, 939.)
(g) Gao, Y.; Xiao, Z.; Liu, L.; Huang, P. Chin. J. Org. Chem. 2017, 37, 1189. (高燕娇, 肖振华, 刘良先, 黄培强, 有机化学, 2017, 37, 1189.)
(h) Zhang, J.; Wu, Z.; Xie, F.; Zhang, W. Chin. J. Org. Chem. 2018, 38, 1319. (张金刚, 吴正兴, 谢芳, 张万斌, 有机化学, 2018, 38, 1319.)
(i) Zhao, L.; Zhou, S.; Tong, J.; Wang, J.; Liu, H. Chin. J. Org. Chem. 2018, 38, 1437. (赵亮, 周胜斌, 童军华, 王江, 柳红, 有机化学, 2018, 38, 1437.)
[3] For recent reviews about 1,3-dipolar cycloadditions of iminoesters, see:(a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
(b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.
(c) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Chem. Rev. 2008, 108, 3174.
(d) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132.
(e) Engels, B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968.
(f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.
(g) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703.
(h) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492.
(i) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660.
(j) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
(k) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
(l) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166.
(m) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
(n) Fang, X.; Wang, C.-J. Org. Biomol. Chem. 2018, 16, 2591.
[4] (a) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.
(b) Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174.
(c) Knöpfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 5971.
(d) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X. J. Am. Chem. Soc. 2007, 129, 750.
(e) López-Pérez, A.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2009, 48, 340.
(f) Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750.
(g) Yamashita, Y.; Imaizumi, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 4893.
(h) Xu, H.; Golz, C.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2016, 55, 7761.
(i) Pascual-Escudero, A.; de Cózar, A.; Cossío, F. P.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2016, 55, 15334.
(j) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394.
(k) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364.
(l) Wang, C.-J.; Liang, G.; Xue, Z. Y.; Gao, F. J. Am. Chem. Soc. 2008, 130, 17250.
(m) Nájera, C.; Retamosa, M. d. G.; Sansano, J. M. Angew. Chem., Int. Ed. 2008, 47, 6055.
(n) Yamashita, Y.; Guo, X.-X.; Takashita, R.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3262.
(o) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
(p) Potowski, M.; Schürmann, M.; Preut, H.; Antonchick, A. P.; Waldmann, H. Nat. Chem. Biol. 2012, 8, 428.
(q) Awata, A.; Arai, T. Angew. Chem., Int. Ed. 2014, 53, 10462.
(r) Narayan, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2013, 52, 12892.
(s) Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2010, 2, 735.
(t) Liu, T.-L.; He, Z.-L.; Wang, C.-J. Chem. Commun. 2011, 47, 9600.
(u) Li, Q.; Huang, R.; Wang, C.-J. Acta Chim. Sinica 2014, 72, 830. (李清华, 黄蓉, 王春江, 化学学报, 2014, 72, 830.)
(v) Xu, S.; Zhang, Z. M.; Xu, B.; Liu, B.; Liu, Y.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 2272.
(w) Xu, B.; Zhang, Z.-M.; Liu, B.; Xu, S.; Zhou, L. J.; Zhang, J. Chem. Commun. 2017, 53, 8152.
(x) Xu, S.; Liu, B.; Zhang, Z.-M.; Xu, B.; Zhang, J. Chin. J. Chem. 2018, 36, 421.
[5] Allway, P.; Grigg, R. Tetrahedron Lett. 1991, 32, 5817.
[6] Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.
[7] (a) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979.
(b) Arai, T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew. Chem., Int. Ed. 2010, 49, 7895.
(c) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem., Int. Ed. 2015, 54, 5255.
(d) Feng, B.; Chen, J.-R.; Yang, Y.-F.; Lu, B.; Xiao, W. J. Chem. Eur. J. 2018, 24, 1714.
[8] For applications of Ming-Phos in asymmetric catalysis, see:(a) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X. L.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 4350.
(b) Chen, M.; Zhang, Z.-M.; Yu, Z.; Qiu, H.; Ma, B.; Wu, H.-H.; Zhang, J. ACS Catal. 2015, 5, 7488.
(c) Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324.
(d) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210.
(e) Wang, Y.; Zhang, Z.-M.; Liu, F.; He, Y.; Zhang, J. Org. Lett. 2018, 20, 6403.
(f) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018.
(g) Wu, Y.; Xu, B.; Liu, B.; Zhang, Z. M.; Liu, Y. Org. Biomol. Chem. 2019, 17, 1395.
(h) Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang Z.-M.; Zhang, J. Angew. Chem., Int. Ed. 2020, 59, 2769.
(i) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. DOI:10.1002/cjoc.202000034.
Outlines

/