Review

Cross-Coupling Hydrogen Evolution Reactions

  • Dong Kui ,
  • Liu Qiang ,
  • Wu Li-Zhu
Expand
  • a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000;
    b Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2019-11-23

  Online published: 2020-03-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572090, 91427303, 21402217, 21390404), the Ministry of Science and Technology of China (Nos. 2013CB834804, 2013CB834505, 2014CB239402) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17030200).

Abstract

During the past decade, transition metal-catalyzed dehydrogenative cross-couplings have emerged as an attractive strategy in synthetic chemistry due to its high step- and atom-economy as well as the less functionalized coupling partners. However, such reactions have to always use stoichiometric amount of sacrificial oxidants such as peroxides, high-valent metals (Cu salts, Ag salts, etc.), or iodine(III) oxidants, thereby leading to possible generation of toxic wastes and making the process less desirable from a green chemistry perspective. The recently developed photocatalytic CCHE (cross-coupling hydrogen-evolution) reactions are a conceptually new type of reactions enabled by combination of photo-redox catalysis and proton reduction catalysis, wherein the photocatalyst uses light energy as the driving force for the cross-coupling and the hydrogen evolution catalyst may capture electrons and protons from the substrates or reaction intermediates to produce molecular hydrogen (H2). Thus, without use of any sacrificial oxidant and under mild conditions, the dual catalyst system may afford cross-coupling products with excellent yields and an equivalent amount of H2 as the sole byproduct. This kind of cross-coupling delivers a greener synthetic strategy and is particularly useful for reactions that involve species sensitive to traditional oxidants. In CCHE reactions, the raw materials are directly converted into products and hydrogen, the reactions are highly atom economy, environmentally friendly, and have attractive potential industrial application prospects. In this review, recent dramatic developments of photocatalytic and electrochemical CCHE reactions are discussed via the most prominent mechanistic pathways, the types of C-C bond, C-X (heteroatom) bond, or X-X bond formations and specific reaction classes.

Cite this article

Dong Kui , Liu Qiang , Wu Li-Zhu . Cross-Coupling Hydrogen Evolution Reactions[J]. Acta Chimica Sinica, 2020 , 78(4) : 299 -310 . DOI: 10.6023/A19110412

References

[1] Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34(in Chinese). (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34).
[2] Liu, Q.; Wu, L.-Z. Natl. Sci. Rev. 2017, 4, 359.
[3] Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
[4] Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.
[5] Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.
[6] Gao, X.-W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391.
[7] Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Ye, C.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Eur. J. 2015, 21, 18080.
[8] Cao, W. X.; Wu, C. J.; Lei, T.; Yang, X. L.; Chen, B.; Tung, C. H.; Wu, L. Z. Chin. J. Catal. 2018, 39, 1194.
[9] Tang, S.; Zeng, L.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 13128.
[10] Wang, H. M.; Gao, X. L.; Lv, Z. C.; Abdelilah, T.; Lei, A. W. Chem. Rev. 2019, 119, 6769.
[11] Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
[12] Tyagi, A.; Yamamoto, A.; Yamamoto, M.; Yoshidad, T.; Yoshida, H. Catal. Sci. Technol. 2018, 8, 2546.
[13] Girish, Y. R.; Jaiswal, K.; Prakash, P.; De, M. Catal. Sci. Technol. 2019, 9, 1201.
[14] Wu, C. J.; Meng, Q. Y.; Lei, T.; Zhong, J. J.; Liu, W. Q.; Zhao, L. M.; Li, Z. J.; Chen, B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2016, 6, 4635.
[15] Hu, X.; Zhang, G. T; Bu, F. X.; Luo, X.; Yi, K. B.; Zhang, H.; Lei, A. W. Chem. Sci. 2018, 9, 1521.
[16] Zhang, G. T.; Lin, Y. L.; Luo, X.; Hu, X.; Chen, C.; Lei, A. W. Nat. Commun. 2018, 9, 1225.
[17] Lin, J.; Li, Z.; Kan, J.; Huang, S. J.; Su, W. P.; Li, Y. D. Nat. Commun. 2017, 8, 14353.
[18] Cao, H.; Jiang, H. M.; Feng, H. Y.; Kwan, J. M. C.; Liu, X. G.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360.
[19] Sun, X.; Chen, J.; Ritter, T. Nature Chem. 2018, 10, 1229.
[20] Nguyen, V. T.; Nguyen, V. D.; Haug, G. C.; Dang, H. T.; Jin, S.; Li, Z.; Flores-Hansen, C.; Benavides, B. S.; Arman, H. D.; Larionov, O. V. ACS Catal. 2019, 9, 9485.
[21] Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc. 2012, 134, 3571.
[22] Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2014, 53, 5210.
[23] Wiebe, A.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 14727.
[24] Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 13325.
[25] Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 4877.
[26] Wu, Z. J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 4734.
[27] Zhang, G. T.; Hu, X.; Chiang, C. W.; Yi, H.; Pei, P. K.; Singh, A. K.; Lei, A. W. J. Am. Chem. Soc. 2016, 138, 12037.
[28] Yi, H.; Niu, L.; Song, C.; Li, Y.; Dou, B.; Singh, A. K.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 1120.
[29] Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. J. Org. Chem. Front. 2018, 5, 749.
[30] Shao, A.; Li, N.; Gao, Y.; Zhan, J.; Chiang, C.-W.; Lei, A. W. Chin. J. Chem. 2018, 36, 619.
[31] Shao, A.; Zhan, J.; Li, N.; Chiang, C.-W.; Lei, A. W. J. Org. Chem. 2018, 83, 3582.
[32] Yang, Q.; Jia, Z. B.; Li, L. J.; Zhang, L.; Luo, S. Z. Org. Chem. Front. 2018, 5, 237.
[33] Hu, X.; Zhang, G.; Bu, F.; Lei, A. W. Angew. Chem., Int. Ed. 2018, 57, 1286.
[34] Tian, W.-F.; Wang, D.-P.; Wang, S.-F.; He, K.-H.; Cao, X.-P.; Li, Y. Org. Lett. 2018, 20, 1421.
[35] Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.; Lei, A. W. Nat. Commun. 2017, 8, 14226.
[36] Chen, H.; Yi, H.; Tang, Z. L.; Bian, C. L.; Zhang, H.; Lei, A. W. Adv. Synth. Catal. 2018, 360, 3220.
[37] Zhao, F. Q.; Yang, Q.; Zhang, J. J.; Shi, W. M.; Hu, H. H.; Liang, F.; Wei, W.; Zhou, S. L. Org. Lett. 2018, 20, 7753.
[38] Zhao, Q.-Q.; Hu, X.-Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2016, 52, 12749.
[39] Zhong, J.-J.; To, W.-P.; Liu, Y.; Lu, W.; Che, C.-M. Chem. Sci. 2019, 10, 4883.
[40] Tang, S.; Wang, S. Y.; Liu, Y. C.; Cong, H. J.; Lei, A. W. Angew. Chem., Int. Ed. 2018, 57, 4737.
[41] Wang, J. H.; Lei, T.; Nan, X. L.; Wu, H. L.; Li, X. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2019, 21, 5581.
[42] Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090.
[43] Gao, X. L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 4195.
[44] Yang, Q. L.; Wang, X. Y.; Lu, J. Y.; Zhang, L. P.; Fang, P.; Mei, T. S. J. Am. Chem. Soc. 2018, 140, 11487.
[45] Zhao, H.-B.; Hou, Z.-W.; Liu, Z.-J.; Zhou, Z.-F.; Song, J.-S.; Xu, H.-C. Angew. Chem., Int. Ed. 2017, 56, 587.
[46] Niu, L. B.; Wang, S. C.; Liu, J. M.; Yi, H.; Liang, X. A.; Liu, T. Y.; Lei, A. W. Chem. Commun. 2018, 54, 1659.
[47] Luo, K.; Chen, Y.-Z.; Yang, W.-C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.
[48] Liu, W. Q.; Lei, T.; Zhou, S.; Yang, X. L.; Li, J.; Chen, B.; Sivaguru, J.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2019, 141, 13941.
[49] Wang, J. H.; Li, X. B.; Li, J.; Lei, T.; Wu, H. L.; Nan, X. L.; Tung, C. H.; Wu, L. Z. Chem. Commun. 2019, 55, 10376.
[50] Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. W. J. Am. Chem. Soc. 2015, 137, 9273.
[51] Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A. W. Chem. Commun. 2016, 52, 10407.
[52] Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 3009.
[53] Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. W. Chin. J. Chem. 2019, 37, 49.
[54] Liu, W.-Q.; Yang, X.-L.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2019, 77, 861(in Chinese). (刘文强, 杨修龙, 佟振合, 吴骊珠, 化学学报, 2019, 77, 861).
[55] Lu, F.-L.; Yang, Z.-Z.; Wang, T.; Wang, T.-H.; Zhang, Y.-Y.; Yuan, Y.; Lei, A.-W. Chin. J. Chem. 2019, 37, 547.
[56] Yu, W. L.; Luo, Y. C.; Yan, L.; Liu, D.; Wang, Z. Y.; Xu, P. F. Angew. Chem., Int. Ed. 2019, 58, 10941.
[57] Li, X.-B.; Li, Z.-J.; Gao, Y.-J.; Meng, Q.-Y.; Yu, S.; Weiss, R. G.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 2085.
[58] He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
[59] Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.
[60] Yin, Q.; Oestreich, M. Angew. Chem., Int. Ed. 2017, 56, 7716.
[61] Chai, Z. G.; Zeng, T. T.; Li, Q.; Lu, L. Q.; Xiao, W. J.; Xu, D. S. J. Am. Chem. Soc. 2016, 138, 10128.
[62] Zhao, L.-M.; Meng, Q.-Y.; Fan, X.-B.; Ye, C.; Li, X.-B.; Chen, B.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2017, 56, 3020.
[63] Huang, C.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Chem. Eur. J. 2018, 24, 11530.
[64] Yang, X.-J.; Zheng, Y.-W.; Zheng, L.-Q.; Wu, L.-Z.; Tung, C.-H.; Chen, B. Green Chem. 2019, 21, 1401.
[65] Sahoo, M. K.; Saravanakumar, K.; Jaiswal, G.; Balaraman, E. ACS Catal. 2018, 8, 7727.
[66] West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.
[67] Zhong, J.-J.; Wu, C.-J.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Tung, C.-H.; Wu, L.-Z. Adv. Synth. Catal. 2014, 356, 2846.
[68] Yang, X. L.; Guo, J. D.; Lei, T.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2018, 20, 2916.
[69] Yang, Q.; Zhang, L.; Ye, C.; Luo, S. Z.; Wu, L.-Z.; Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.
[70] Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
[71] Zheng, Y.-W.; Ye, P.; Chen, B.; Meng, Q.-Y.; Feng, K.; Wang, W.; Wu, L.-Z.; Tung, C.-H. Org. Lett. 2017, 19, 2206.
[72] Su, X. J. Am. Chem. Soc. 2013, 135, 19047.
[73] Su, X. J. Am. Chem. Soc. 2016, 138, 11409.
[74] Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
[75] Yi, H.; Niu, L. B.; Song, C. L.; Li, Y. Y.; Dou, B. W.; Singh, A. K.; Lei, A. W. Angew. Chem. 2017, 129, 1140.
[76] Tang, S.; Gao, X. L.; Lei, A. W. Chem. Commun. 2017, 53, 3354.
[77] He, K.-H.; Li, Y. ChemSusChem 2014, 7, 2788.
[78] Li, W.-H.; Wu, L.; Li, S.-S.; Liu, C.-F.; Zhang, G.-T.; Dong, L. Chem. Eur. J. 2016, 22, 17926.
[79] Chen, C.; Chen, X.; Zhao, H.; Jiang, H.; Zhang, M. Org. Lett. 2017, 19, 3390.
[80] Ren, L.-J.; Ran, M.-G.; He, J.-X.; Qian, Y.; Yao, Q.-L. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese). (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583).
Outlines

/