Article

Preparation of α-Fe2O3/(IPDI-HTPB) Composite Nanoparticles and Their Catalytic Performance

  • Wu Yan ,
  • Pang Aimin ,
  • Hu Lei ,
  • He Gensheng ,
  • Zhang Yingying ,
  • Zhang Lixiong ,
  • Li Minghai ,
  • Ma Zhenye
Expand
  • a College of Chemical and Material Science, Nanjing Normal University, Nanjing 210097;
    b Science and Technology on Aerospace Chemical Power Laboratory, Institute of Aerospace Chemotechnology, Xiangyang 441003;
    c State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009

Received date: 2019-12-09

  Online published: 2020-03-12

Supported by

Project supported by the Science and Technology on Aerospace Chemical Power Laboratory (No. STACPL120181B02-2).

Abstract

In ammonium perchlorate (AP) based composite propellants, α-Fe2O3 nanoparticles and hydroxyl terminated polybutadiene (HTPB) are commonly used as catalyst and binder respectively. Their properties and dispersion significantly affect the combustion performance of the composite propellants. However, α-Fe2O3 nanoparticles are hard to disperse uniformly in the binder HTPB owing to the high viscosity, which will decrease their catalytic activity. Directly composite processing of α-Fe2O3 nanoparticles with other main components of composite propellants may be an effective strategy to prevent from aggregation without introducing other components to the solid propellant at the same time. In this paper, the α-Fe2O3/ (IPDI-HTPB) composite nanoparticles were prepared by choosing curing agent isophorone diisocyanate (IPDI) as grafting bridge. The typical procedure was as follows: (1) The first step was to synthesize IPDI-HTPB. In order to adjudged the reaction terminal point of IPDI and HTPB, the reaction kinetics of HTPB and IPDI were first researched and the proper reaction conditions were chosen as follows:molar ratio of HTPB and IPDI is 1:1, reaction temperature is under 80℃ and reaction time is 2 h. (2) The second step was to synthesize α-Fe2O3/(IPDI-HTPB) composite nanoparticles. Firstly, the stoichiometric α-Fe2O3 nanoparticles were dispersed in toluene under ultrasound for 10 min. Secondly, the mixture were added in the above IPDI-HTPB solution and the reaction kept for 4 h. Thirdly, the α-Fe2O3/(IPDI-HTPB) composite nanoparticles were centrifuged and washed with toluene and ether for several times. Finally, α-Fe2O3/(IPDI-HTPB) composite nanoparticles were dried in the oven at 80℃ for 12 h. (3) The structure of α-Fe2O3/(IPDI-HTPB) composite nanoparticles were characterized by X-ray diffractometer (XRD), transmittance electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR) and thermogravimetric analysis (TGA). It was observed that HTPB could be chemically coated on the surface of the α-Fe2O3 nanoparticles by the grafting activity of IPDI. The depth of the IPDI-HTPB was nearly 5 nm. The α-Fe2O3/(IPDI-HTPB) composite nanoparticles showed hydrophobicity after the composite process. Compare with the pure α-Fe2O3 nanoparticles, α-Fe2O3 nanoparticles in α-Fe2O3/IPDI-HTPB composite nanoparticles showed better catalytic activity on the thermal decomposition of AP.

Cite this article

Wu Yan , Pang Aimin , Hu Lei , He Gensheng , Zhang Yingying , Zhang Lixiong , Li Minghai , Ma Zhenye . Preparation of α-Fe2O3/(IPDI-HTPB) Composite Nanoparticles and Their Catalytic Performance[J]. Acta Chimica Sinica, 2020 , 78(4) : 337 -343 . DOI: 10.6023/A19120419

References

[1] Wu, J. J.; Ji, Z. Y.; Shen, X. P.; Miao, X. L.; Xu, K. Q. Acta Chim. Sinica 2017, 75, 1207(in Chinese). (吴佳佳, 季振源, 沈小平, 缪绪立, 徐克强, 化学学报, 2017, 75, 1207.)
[2] Mu, Y.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Acta Chim. Sinica 2017, 75, 538(in Chinese). (穆毅, 贾法龙, 艾智慧, 张礼知, 化学学报, 2017, 75, 538.)
[3] Cui, S. Z.; Yang, H. P.; Sun, H. H.; Nie, K.; Wu, J. M. Acta Chim. Sinica 2016, 74, 995(in Chinese). (崔素珍, 杨汉培, 孙慧华, 聂坤, 吴俊明, 化学学报, 2016, 74, 995.)
[4] Padwal, M. B.; Varmal, M. Combust. Sci. Technol. 2018, 190, 1614.
[5] Chang, H. Z.; Zhang, T.; Dang, H.; Chen, X. Y.; You, Y. C.; Schwank, J.; Li, J. H. Catal. Sci. Technol. 2018, 8, 3313.
[6] Niu, H. H.; Zhang, S. W.; Ma, Q.; Qin, S. X.; Wan, L.; Xu, J. Z.; Miao, S. D. RSC Adv. 2013, 3, 17228.
[7] Narayani, H.; Jose, M.; Sriram, K.; Shukla, S. Environ. Sci. Pollut. Res. 2018, 25, 20304.
[8] Shahrousvand, M.; Hoseinian, M. S.; Ghollasi, M.; Karbalaeimahdi, A.; Salimi, A.; Tabar, F. A. Mater. Sci. Eng. C 2017, 74, 556.
[9] Ke, X.; Zhou, X.; Hao, G. Z.; Xiao, L.; Liu, J.; Jiang, W. Appl. Surf. Sci. 2017, 407, 137.
[10] Xu, H.; Wang, X. B.; Zhang, L. Z. Powder Technol. 2008, 185, 176.
[11] Song, L. M.; Zhang, S. J.; Chen, B.; Ge, J. J.; Jia, X. C. Colloids Surf. A 2010, 360, 1.
[12] Atta, A. H.; El-ghamry, M. A.; Hamzaoui, A.; Refat, M. S. J. Mol. Struct. 2015, 1086, 246.
[13] Jadhav, S. A.; Bongiovanni, R. L.; Marchisio, D.; Fontana, D.; Egger, C. Pigm. Resin Technol. 2014, 43, 219.
[14] Iida, H.; Nakanishi, T.; Osaka, T. Electrochim. Acta 2005, 51, 855.
[15] Zhan, J. Y.; Tian, G. F.; Jiang, L. Z.; Wu, Z. P.; Wu, D. Z.; Yang, X. P. Thin Solid Films 2008, 516, 6315.
[16] Liu, J.; Ke, X.; Xiao, L.; Hao, G. Z.; Rong, Y. B.; Jin, C. S.; Jiang, W.; Li, F. S. Propellants Explos. Pyrotech. 2018, 43, 144.
[17] Jin, B.; Peng, R.; Zhao, F.; Yi, J.; Xu, S.; Wang, S.; Chu, S. Propellants Explos. Pyrotech. 2014, 39, 874.
[18] Lu, Y. W.; Zhu, Y. F.; Xu, P. F.; Ye, P.; Gao, B.; Sun, Y.; Guo, C. P. J. Solid State Chem. 2018, 258, 718.
[19] Isert, S.; Groven, L. J.; Lucht, R. P.; Son, S. F. Combust. Flame 2015, 162, 1821.
[20] Hu, L; Ma, Z. Y.; Ji, M. W.; Zhang, L. X. Acta Chim. Sinica 2011, 69, 3028(in Chinese). (胡磊, 马振叶, 纪明卫, 张利雄, 化学学报, 2011, 69, 3028.)
[21] Yin, L.; Chu, J. L. Paint Coat. Ind. 1999, 29, 34.
[22] Hailu, K.; Guthausen, G.; Becker, W.; König, A.; Bendfeld, A.; Geissler, E. Polym. Test. 2010, 29, 513.
[23] Catherine, K. B.; Krishnan, K.; Nina, K. B. J. Therm. Anal. Calorim. 2000, 59, 93.
[24] Yang, R. J.; Ma, Q. Y. J. Solid Rocket Technol. 1991, 9, 78(in Chinese). (杨荣杰, 马庆云, 固体火箭技术, 1991, 9, 78.)
[25] Ganga, T.; Devi, G. T.; Kannan, M. P.; Hema, B. Thermochim. Acta 1996, 285, 269.
[26] Winfried, K. R.; Eli, S. F. J. Phys. Chem. 1970, 74, 3317.
[27] Ma, Z. Y.; Wu, R. J.; Song, J.; Li, C.; Chen, R. Z.; Zhang, L. X. Propellants Explos. Pyrotech. 2012, 37, 183.
Outlines

/