Perspective

Noncovalent Interaction in Transition Metal-Catalyzed Selective C-H Activation

  • Liao Gang ,
  • Wu Yong-Jie ,
  • Shi Bing-Feng
Expand
  • Department of Chemistry, Zhejiang University, Hangzhou 310027

Received date: 2020-02-08

  Online published: 2020-03-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21901228, 21772170), the China Postdoctoral Science Foundation (No. 2019M650135), the Outstanding Young Talents of Zhejiang Province High-level Personnel of Special Support (No. ZJWR0108) and the Natural Science Foundation of Zhejiang Province (No. LR17B020001).

Abstract

Transition metal-catalyzed direct C-H functionalization is one of the most efficient and powerful tools for the rapid synthesis of organic molecules. The use of functional groups in the molecules or covalently attached coordinating groups as directing groups has been realized as a major strategy to control the selectivity. Noncovalent interactions are of great importance in the field of molecular biology, supramolecular chemistry, material science and drug discovery. More recently, the use of well-designed ligands to enable the site-selective C-H functionalization via noncovalent interactions has emerged as a highly promising yet relatively less explored strategy. In this perspective, recent advances in this cutting-edge area are summarized. The perspective was classified into four sections according to the type of noncovalent interactions, including hydrogen bonding, ion pair, Lewis acid-base interaction and electrostatic interaction. Emphasis is placed on the mode of noncovalent interactions among the transition metals, ligands and substrates. The limitation of current research and the prospect of future work will also be discussed. We anticipate that this strategy might become a promising complementary strategy to control the positional selectivity in C-H functionalization reactions.

Cite this article

Liao Gang , Wu Yong-Jie , Shi Bing-Feng . Noncovalent Interaction in Transition Metal-Catalyzed Selective C-H Activation[J]. Acta Chimica Sinica, 2020 , 78(4) : 289 -298 . DOI: 10.6023/A20020027

References

[1] For recent reviews on C-H activation, see:(a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (c) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (d) Pan, F.; Shi, Z. Acta Chim. Sinica 2012, 70, 1679. (潘菲, 施章杰, 化学学报, 2012, 70, 1679.) (e) Yuan, Y.; Song, S.; Jiao, N. Acta Chim. Sinica 2015, 73, 1231. (袁逸之, 宋颂, 焦宁, 化学学报, 2015, 73, 1231.) (f) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843. (g) Xu, J.; Lu, P.; Ye, J.; Liu, G. Acta Chim. Sinica 2015, 73, 1294. (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294.) (h) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053. (i) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635. (j) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028. (k) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787. (l) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev., 2017, 117, 8754. (m) Huang, J.; Gu, Q.; You, S.-L. Chin. J. Org. Chem. 2018, 38, 51. (黄家翩, 顾庆, 游书力, 有机化学, 2018, 38, 51.) (n) Ren, Q.; Nie, B.; Zhang, Y.; Zhang, J. Chin. J. Org. Chem. 2018, 38, 2465. (任青云, 聂飚, 张英俊, 张霁, 有机化学, 2018, 38, 2465). (o) Zhao, K.; Yang, L.; Liu, J.; Xia, C. R. Chin. J. Org. Chem. 2018, 38, 2833. (赵康, 杨磊, 刘建华, 夏春谷, 有机化学, 2018, 38, 2833.) (p) Wang, S.; Yan, F.; Wang, L.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291. (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.) (q) Xu, L.; Xu, H.; Lin, H.; Dai, H. Chin. J. Org. Chem. 2018, 38, 1940. (徐琳琳, 徐辉, 林海霞, 戴辉雄, 有机化学, 2018, 38, 1940) (r) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192. (s) Zhang, S.; Liao, G.; Shi, B. Chin. J. Org. Chem. 2019, 39, 1522. (张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522). (t) Wu, M.; Huang, X.; Zhang, H.; Li, P. Chin. J. Org. Chem. 2019, 39, 3114. (吴梅, 黄新平, 张海兵, 李鹏飞, 有机化学, 2019, 39, 3114). (u) Zhan, B.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 3602. (占贝贝, 史炳锋, 有机化学, 2019, 39, 3602.
[2] (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. (b) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig G.; Schaaf, P.; Wiesinger, T.; Farooq Zia, M.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603. (c) Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37, 647. (d) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788.
[3] Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
[4] For reviews and representative examples, see:(a) Gong, L.-Z. Acta Chim. Sinica 2018, 76, 817. (龚流柱, 化学学报, Acta Chim. Sinica 2018, 76, 817.) (b) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977. (c) Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199. (d) John-Campbell, S. S.; Bull, J. A. Org. Biomol. Chem. 2018, 16, 4582. (e) Bhattacharya, T.; Pimparkar, S.; Maiti, D. RSC Adv. 2018, 8, 19456. (f) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433. (g) Sun, H.; Guimond, N.; Huang, Y. Org. Biomol. Chem. 2016, 14, 8389. (h) Xu, Y.; Su, T.; Huang, Z.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 2559. (i) Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem., Int. Ed. 2017, 56, 6617. (j) Liu, Y.; Ge, H.; Liu, X.-H.; Park, H.; Hu, J.-H.; Hu, Y.; Zhang, Q.-L.; Wang, B.-L.; Sun, B.; Yeung, K.; Zhang, F.-L.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 888. (k) Chen, X. Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 1140. (l) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 3661. (m) Liao, G.; Li, B.; Chen, H.-M.; Yao, Q.-J.; Xia, Y.-N.; Luo, J.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 17151. (n) Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956. (o) Song, H.; Li, Y.; Yao, Q.-J.; Jin, L.; Liu, L.; Liu, Y.-H.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, DOI:10.1002/anie.201915949. (p) Wu, Y.-J.; Yao, Q.-J.; Chen, H.-M.; Liao, G.; Shi, B.-F. Sci. China, Chem. 2020, DOI:10.1007/s11426-020-9694-3.
[5] Davis, H. J.; Phipps, R. J. Chem. Sci. 2017, 8, 864.
[6] (a) For selected reviews on noncovalent interactions, see:Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature 2017, 543, 637. (b) Müller-Dethlefs, K.; Hobza, P. Chem Rev. 2000, 100, 143. (c) Breugst, M.; von der Heiden, D.; Schmauck, J. Synthesis 2017, 49, 3224. (d) Hobza P, Müller-Dethlefs K. Non-Covalent Interactions, The Royal Society of Chemistry, Cambridge, 2009. (e) Scheiner, S. Noncovalent Forces, Heidelberg, Springer, 2015; (f) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (g) Doyle, A. G.; Jacobsen, E. N. Chem Rev. 2007, 107, 5713;
[7] (a) You, C.-C.; Zhang, M.; Liu, Y. Acta Chim. Sinica 2000, 58, 338. (尤长城, 张旻, 刘育, 化学学报, 2000, 58, 338.) (b) Xu, J.; Wang, Z.; Zhang, X. Acta Chim. Sinica 2016, 74, 467. (徐俊, 王治强, 张希, 化学学报, 2016, 74, 467.) (c) Zhu, J.; Lü, J.-G.; Zhou, Y.-J.; Li, Y.-W.; Chen, J.; Zhen, C.-H. Acta Chim. Sinica 2007, 65, 37. (朱驹, 吕加国, 周有骏, 李耀武, 陈军, 郑灿辉, 化学学报, 2007, 65, 37.) (d) Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Acc. Chem. Res. 2016, 49, 1061. (e) Persch, E.; Dumele, O.; Diederich, F. Angew. Chem., Int. Ed. 2015, 54, 3290. (f) Jiang, H.; Li, Q.; Wang, G. Chin. J. Org. Chem. 2018, 38, 1065. (江华, 李巧连, 王光霞, 有机化学, 2018, 38, 1065.) (g) Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659. (焦阳, 张希, 化学学报, 2018, 76, 659.) (h) Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Chin. J. Org. Chem. 2019, 39, 28. (刘传志, 王辉, 张丹维, 赵新, 黎占亭, 有机化学, 2019, 39, 28.)
[8] Roosen, P. C.; Kallepalli, V. A.; Chattopadhyay, B.; Singleton, D. A.; Maleczka, R. E.; Smith, M. R. J. Am. Chem. Soc. 2012, 134, 11350.
[9] Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R. Angew. Chem., Int. Ed. 2013, 52, 12915.
[10] Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. Nat. Chem. 2015, 7, 712.
[11] Wang, J.; Torigoe, T.; Kuninobu, Y. Org. Lett. 2019, 21, 1342.
[12] Lu, X.; Yoshigoe, Y.; Ida, H.; Nishi, M.; Kanai, M.; Kuninobu, Y. ACS Catal. 2019, 9, 1705.
[13] Unnikrishnan, A.; Sunoj, R. B. Chem. Sci. 2019, 10, 3826.
[14] Davis, H. J.; Genov, G. R.; Phipps, R. J. Angew. Chem., Int. Ed. 2017, 56, 13351.
[15] Davis, H. J.; Mihai, M. T.; Phipps, R. J. J. Am. Chem. Soc. 2016, 138, 12759.
[16] Bai, S.-T.; Bheeter, C. B.; Reek, J. N. H. Angew. Chem., Int. Ed. 2019, 58, 13039.
[17] Mihai, M. T.; Davis, H. J.; Genov, G. R.; Phipps, R. J. ACS Catal. 2018, 8, 3764.
[18] Lee, B.; Mihai, M. T.; Stojalnikova, V.; Phipps, R. J. J. Org. Chem. 2019, 84, 13124.
[19] (a) Mihai, M.; Williams, B. D.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 15477. (b) Montero Bastidas, J. R.; Oleskey, T. J.; Miller, S. L.; Smith, M. R.; Maleczka, R. E. J. Am. Chem. Soc. 2019, 141, 15483.
[20] Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84.
[21] Li, H. L.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int. Ed. 2017, 56, 1495.
[22] Yang, L.; Semba, K.; Nakao, Y. Angew. Chem., Int. Ed. 2017, 56, 4853.
[23] Yang, L.; Uemura, N.; Nakao, Y. J. Am. Chem. Soc. 2019, 141, 7972.
[24] Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B. J. Am. Chem. Soc. 2017, 139, 7745.
[25] Bisht, R.; Hoque, M. E.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 15762.
[26] Chattopadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.; Gore, K. A.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. J. Am. Chem. Soc. 2017, 139, 7864.
[27] Zhang, Z.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538.
[28] (a) Achar, T. K.; Ramakrishna, K.; Porey, S.; Pal, T.; Dolui, P.; Biswas, J. P.; Maiti, D. Chem.-Eur. J. 2018, 24, 17906. (b) Ramakrishna, K.; Biswas, J. P.; Jana, S.; Achar, T. K.; Porey, S.; Maiti, D. Angew. Chem., Int. Ed. 2019, 58, 13808.
[29] Haldar, C.; Hoque, M. E.; Bisht, R.; Chattopadhyay, B. Tetrahedron Lett. 2018, 59, 1269.
[30] (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Wencel-Delord, J.; Colobert, F. Chem.-Eur. J. 2013, 19, 14010. (c) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173. (d) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351. (e) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908. (f) Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093. (g) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 759. (h) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Chem. Commun. 2019, 55, 8514. (i) Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558. (j) Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem., Int. Ed. 2019, 58, 6708. (k) Zhan, B.-B.; Wang, L.; Luo, J.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 3568. (l) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242.
Outlines

/