Review

Research Progress of Covalent Organic Framework Materials in Catalysis

  • Liu Jianguo ,
  • Zhang Mingyue ,
  • Wang Nan ,
  • Wang Chenguang ,
  • Ma Longlong
Expand
  • a Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China;
    c Dalian National Laboratory for Clean Energy, Dalian 116023, China;
    d School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China

Received date: 2019-12-14

  Online published: 2020-04-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 51976225) and Dalian National Laboratory for Clean Energy Cooperation Fund, Chinese Academy of Sciences (No. DNL201916).

Abstract

Covalent organic framework materials (COFs) are a class of organic porous materials with large specific surface area, high porosity and crystallinity. Owning to their special nature of functional versatility and easy modification, COFs can be designed to be efficient catalysts either embed functional active sites into the skeleton through a "top-down" strategy, or load metal nanoparticles into the framework via a post-modification approach. These studies have laid the foundation for the extension of COF's application in heterogeneous and other catalytic fields. The synthetic strategy and application of COF in different types of catalytic reactions are reviewed in this paper. Moreover, the current research situation of COF catalyst is summarized and prospected. Finally, the remaining challenges in this field are also indicated.

Cite this article

Liu Jianguo , Zhang Mingyue , Wang Nan , Wang Chenguang , Ma Longlong . Research Progress of Covalent Organic Framework Materials in Catalysis[J]. Acta Chimica Sinica, 2020 , 78(4) : 311 -325 . DOI: 10.6023/A19120426

References

[1] Feng, X.; Ding, X.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.
[2] Segura, J. L.; Mancheno, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635.
[3] Song, J. R.; Huang, Z. T.; Zheng, Q. Y. Chin. J. Chem. 2013, 31, 577.
[4] Li, Z. P.; Feng, X.; Zou, Y. C.; Zhang, Y. W.; Xia, H.; Liu, X. M.; Mu, Y. Chem. Commun. 2014, 50, 13825.
[5] Huang, N.; Chen, X.; Krishna, R.; Jiang, D. L. Angew. Chem. Int. Ed. 2015, 54, 2986.
[6] Zhao, Y. F.; Yao, K. X.; Teng, B. Y.; Zhang, T.; Han, Y. Energ. Environ. Sci. 2013, 6, 3684.
[7] Wang, P. Y.; Kang, M. M.; Sun, S. M.; Liu, Q.; Zhang, Z. H.; Fang, S. M. Chin. J. Chem. 2014, 32, 838.
[8] Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. L. Angew. Chem. Int. Ed. 2012, 51, 2618.
[9] Wang, J. H.; Zhang, Y.; An, L. C.; Wang, W. H.; Zhang, Y. H.; Bu, X. H. Chin. J. Chem. 2018, 36, 826.
[10] Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339. (杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
[11] Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681. (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
[12] He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202. (贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76, 202.)
[13] Zhang, S. X; Shao, X. F. Acta Chim. Sinica 2018, 76, 531. (张尚玺, 邵向锋, 化学学报, 2018, 76, 531.)
[14] Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M.; Deng, R.; Fu, Y. K.; Li, L.; Xue, W. J.; Chen, S. Chem. Soc. Rev. 2019, 48, 5266.
[15] Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606. (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[16] Davankov, V.; Tsyurupa, M. React. Polym. 1990, 13, 27.
[17] Rojas, A.; Arteaga, O.; Kahr, B.; Camblor, M. A. J. Am. Chem. Soc. 2013, 135, 11975.
[18] Zhang, Y. D.; Zhu, Y. L.; Guo, J.; Gu, S.; Wang, Y. Y.; Fu, Y.; Chen, D. Y.; Lin, Y. J.; Yu, G. P.; Pan, C. Y. Phys. Chem. Chem. Phys. 2016, 18, 11323.
[19] Xu, S. J.; Luo, Y. L.; Tan, B. E. Macromol. Rapid Commun. 2013, 34, 471.
[20] Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I. Adv. Mater. 2008, 20, 1916.
[21] McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
[22] Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C. M.; Vali, H.; Moores, A. J. Am. Chem. Soc. 2015, 137, 6124.
[23] MacLean, M. W.; Reid, L. M.; Wu, X.; Crudden, C. M. Chem. Asian. J. 2015, 10, 70.
[24] Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.
[25] Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47, 3450.
[26] Bojdys, M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Adv. Mater. 2010, 22, 2202.
[27] Ren, S.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24, 2357.
[28] Ranganathan, A.; Heisen, B. C.; Dix, I.; Meyer, F. Chem. Commun. 2007, 3637.
[29] Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M. Angew. Chem. Int. Ed. 2009, 48, 9457.
[30] Ben, T.; Qiu, S. L. CrystEngComm 2013, 15, 17.
[31] Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Energy Environ. Sci. 2011, 4, 3991.
[32] Yu, J. H.; Xu, R. R. J. Mater. Chem. 2008, 18, 4021.
[33] Morris, R. E.; Bu, X. Nat. Chem. 2010, 2, 353.
[34] Fu, X. B.; Yu, G. P. Prog. Chem. 2016, 28, 1006. (付先彪, 喻桂朋, 化学进展, 2016, 28, 1006.)
[35] Hu, H.; Yan, Q. Q.; Ge, R. L.; Gao, Y. A. Chinese J. Catal. 2018, 39, 1167. (胡慧, 闫欠欠, 格日乐, 高艳安, 催化学报, 2018, 39, 1167.)
[36] Li, Y. W.; Yang, R. T. AIChE J. 2008, 54, 269.
[37] Spitler, E. L.; Colson, J. W.; Uribe-Romo, F. J.; Woll, A. R.; Giovino, M. R.; Saldivar, A.; Dichtel, W. R. Angew. Chem. Int. Ed. 2012, 51, 2623.
[38] Wang, T.; Xue, R.; Wei, Y. L.; Wang, M. Y.; Guo, H.; Yang, W. Prog. Chem. 2018, 30, 753. (王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武, 化学进展, 2018, 30, 753.)
[39] Côté, A.; Benin, A.; Ockwig, N.; O'keeffe, M.; Matzger, A.; Yaghi, O. Chem. Mater. 2006, 18, 5296.
[40] Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.
[41] Ma, H. C.; Kan, J. L.; Chen, G. J.; Chen, C. X.; Dong, Y. B. Chem. Mater. 2017, 29, 6518.
[42] Bhadra, M.; Sasmal, H. S.; Basu, A.; Midya, S. P.; Kandambeth, S.; Pachfule, P.; Balaraman, E.; Banerjee, R. ACS Appl. Mater. Interfaces 2017, 9, 13785.
[43] Li, Y.; Chen, W. B.; Gao, R. D.; Zhao, Z. Q.; Zhang, T.; Xing, G. L.; Chen, L. Chem. Commun. 2019, 55, 14538.
[44] Han, X.; Xia, Q. C.; Huang, J. J.; Liu, Y.; Tan, C. X.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8693.
[45] Lyu, H.; Diercks, C. S.; Zhu, C.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 6848.
[46] Mullangi, D.; Chakraborty, D.; Pradeep, A.; Koshti, V.; Vinod, C. P.; Panja, S.; Nair, S.; Vaidhyanathan, R. Small 2018, 14, e1801233.
[47] Mu, M. M.; Wang, Y. W.; Qin, Y. T.; Yan, X. L.; Li, Y.; Chen, L. G. ACS Appl. Mater. Interfaces 2017, 9, 22856.
[48] Vardhan, H.; Verma, G.; Ramani, S.; Nafady, A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Yang, H.; Ma, S. ACS Appl. Mater. Interfaces 2019, 11, 3070.
[49] Li, X.; Wang, Z. F.; Sun, J. X.; Gao, J.; Zhao, Y.; Cheng, P.; Aguila, B.; Ma, S. Q.; Chen, Y.; Zhang, Z. J. Chem. Commun. 2019, 55, 5423.
[50] Zhang, J.; Han, X.; Wu, X. W.; Liu, Y.; Cui, Y. ACS Sustainable Chem. Eng. 2019, 7, 5065.
[51] Vardhan, H.; Hou, L.; Yee, E.; Nafady, A.; Al-Abdrabalnabi, M. A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Ma, S. ACS Sustainable Chem. Eng. 2019, 7, 4878.
[52] Puthiaraj, P.; Pitchumani, K. Chemistry 2014, 20, 8761.
[53] Dong, B.; Wang, L. Y.; Zhao, S.; Ge, R.; Song, X. D.; Wang, Y.; Gao, Y. N. Chem. Commun. 2016, 52, 7082.
[54] Lan, X. W.; Du, C.; Cao, L. L.; She, T. T.; Li, Y. M.; Bai, G. Y. ACS Appl. Mater. Interfaces 2018, 10, 38953.
[55] Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. J. Am. Chem. Soc. 2019, 141, 7615.
[56] Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 6152.
[57] Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.
[58] Huang, W.; Li, Y. G. Chin. J. Chem. 2019, 37, 1291.
[59] Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2017, 139, 16228.
[60] Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 1.
[61] Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.
[62] Biswal, B. P.; Vignolo-Gonzalez, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2019, 141, 11082.
Outlines

/