Review

Separation and Purification of C4~C6 Hydrocarbons Using Metal-organic Frameworks

  • Guo Zhenbin ,
  • Zhang Yuanyuan ,
  • Feng Xiao
Expand
  • a School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081;
    b Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081

Received date: 2020-03-21

  Online published: 2020-04-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21922502, 21674012).

Abstract

As important chemical raw materials and energy source, C4~C6 hydrocarbons are mainly used to produce polymer rubber, plastics and high-quality gasoline, which requires high purity of the raw materials. For example, the purity requirement in 1,3-butadiene polymerization reactor is higher than 99.5%. When producing butyl rubber, tert-butylamine, pivalic acid, etc., the purity of isobutylene should surpass 99%. In the traditional petrochemical industry, C4~C6 hydrocarbons are mostly separated and purified through distillation, yet suffering from large energy consumption, high equipment cost and poor economic benefits. Adsorption separation with solid adsorbents can not only reduce energy cost and environmental footprints, but also improve separation efficiency. Metal-organic frameworks (MOFs) are a class of crystalline porous materials assembled from metal ions or clusters and organic linkers. Compared with zeolite, activated carbon and silica gel, MOFs feature high porosity, well-defined open channels, rich functional groups and diverse structures, showing great potentials in gas storage and separation, sensing, catalysis, photoelectric devices, drug release and delivery. Up to now, there have been many reports on separation and purification of C4~C6 hydrocarbons using MOFs by different mechanisms. Specifically, highly selective separation can be achieved by precisely adjusting the size and shape of the MOF channels to match the size of the target molecule. Besides, selecting MOFs with specific functional groups, open metal sites or flexible skeletons to regulate the interactions between the gas molecules and backbone, can also achieve efficient separation. This review introduced the importance of C4~C6 hydrocarbons separation and summarized the current research progress of using MOFs to separate and purify C4~C6 hydrocarbons. In addition, we also summed up the challenges of using MOFs as industrial adsorbents and pointed out the possible research directions in the future, which may provide ideas for designing new MOFs with high performance for crucial separation processes.

Cite this article

Guo Zhenbin , Zhang Yuanyuan , Feng Xiao . Separation and Purification of C4~C6 Hydrocarbons Using Metal-organic Frameworks[J]. Acta Chimica Sinica, 2020 , 78(5) : 397 -406 . DOI: 10.6023/A20030081

References

[1] Bender, M. ChemBioEng Rev. 2014, 1, 136.
[2] Gehre, M.; Guo, Z.; Rothenberg, G.; Tanase, S. ChemSusChem 2017, 10, 3947.
[3] Ed.:Myers, R. A. Handbook of Petroleum Refining Processes, McGraw-Hill, New York, 2004.
[4] Greensfelder, B. S.; Voge, H. H. Ind. Eng. Chem. Res. 1945, 37, 514.
[5] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.

[6] Tijsebaert, B.; Varszegi, C.; Gies, H.; Xiao, F. S.; Bao, X.; Tatsumi, T.; Muller, U.; De Vos, D. Chem. Commun. 2008, 2480.
[7] (a) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Science 2005, 310, 1166.
(b) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334.
(c) Ferey, G. Chem. Soc. Rev. 2008, 37, 191.
(d) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.
(e) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391.
(f) Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T.
J. Am. Chem. Soc. 2012, 134, 15016.
[8] (a) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724.
(b) Makal, T. A.; Li, J. R.; Lu, W.; Zhou, H. C. Chem. Soc. Rev. 2012, 41, 7761.
(c) Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.
(d) Zhao, X.; Wang, Y.; Li, D. S.; Bu, X.; Feng, P. Adv. Mater. 2018, 30, 1705189.
(e) Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Chem. Soc. Rev. 2017, 46, 3402.
(f) Van de Voorde, B.; Denayer, J.; De Vos, D. Chem. Soc. Rev. 2014, 43, 5766.
(g) Holst, J. R.; Trewin, A.; Cooper, A. I. Nat. Chem. 2010, 2, 915.
(h) Farha, O. K.; Yazaydin, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944.
(i) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
(j) Liu, Y.; Xia, X.-X.; Tan, Y.-Y.; Li, S. Acta Chim. Sinica 2020, 78, 250(in Chinese). (刘洋, 夏潇潇, 谭媛元, 李松, 化学学报, 2020, 78, 250.)
(k) Chen, Z.-Y.; Liu, J.-W.; Cui, H.; Zhang, L.; Su, C.-Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
(l) Bian, L.; Li, W.; Wei, Z.-Z.; Liu, X.-W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese). (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
(m) Yang, W.-Y.; Liang, H.; Qiao, Z.-W. Acta Chim. Sinica 2018, 76, 785(in Chinese). (杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
[9] (a) Yi, F.-Y.; Chen, D.; Wu, M.-K.; Han, L.; Jiang, H. L. ChemPlusChem 2016, 81, 675.
(b) Kempahanumakkagari, S.; Kumar, V.; Samaddar, P.; Kumar, P.; Ramakrishnappa, T.; Kim, K.-H. Biotechnol. Adv. 2018, 36, 467.
(c) Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Chem. Soc. Rev. 2018, 47, 4710.
(d) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
(e) Hu, Z.; Deibert, B. J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815.
(f) Sun, Y.-H.; Qi, Y.-X.; Shen, Y.; Jing, C.-J.; Chen, X.-X.; Wang, X.-X. Acta Chim. Sinica 2020, 78, 147(in Chinese). (孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.)
(g) Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, Z.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese). (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
(h) Shi, Y.-X.; Zhang, W.-H.; Abrahams, B. F.; Braunstein, P.; Lang, J.-P. Angew. Chem., Int. Ed. 2019, 58, 9453.
[10] (a) Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Adv. Mater. 2018, 30, 1703663.
(b) Cui, W.-G.; Zhang, G.-Y.; Hu, T.-L.; Bu, X.-H. Coord. Chem. Rev. 2019, 387, 79.
(c) Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. Nat. Mater. 2018, 17, 301.
(d) Lv, X. L.; Wang, K.; Wang, B.; Su, J.; Zou, X.; Xie, Y.; Li, J. R.; Zhou, H. C. J. Am. Chem. Soc. 2017, 139, 211.
(e) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
(f) Wu, Z.-M.; Shi, Y.; Li, C.-Y.; Niu, D.-Y.; Chu, Q.; Xiong, W.; Li, X.-Y. Acta Chim. Sinica 2019, 77, 758(in Chinese). (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
(g) Xu, H.; Zhang, M.-Y.; Huang, X.; Shi, D.-B. Chin. J. Org. Chem. 2018, 38, 832(in Chinese). (徐缓, 张茂元, 黄香, 史大斌, 有机化学, 2018, 38, 832.)
(h) Guo, X.-L.; Chen, X.; Su, D.-S.; Liang, C.-H. Acta Chim. Sinica 2018, 76, 22(in Chinese). (郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
(i) Huang, G.; Chen, Y.-Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113(in Chinese). (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
(j) Jiao, L.; Jiang, H. L. Chem 2019, 5, 786.
(k) Xiao, J.-D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356.
(l) Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Angew. Chem., Int. Ed. 2019, 58, 7051.
(m) Hu, F.-L.; Mi, Y.; Zhu, C.; Abrahams, B. F.; Braunstein, P.; Lang, J. P. Angew. Chem., Int. Ed. 2018, 57, 12696.
[11] (a) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.
(b) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
(c) Giménez, M.-M.; Hidalgo, T.; Serre, C.; Horcajada, P. Coord. Chem. Rev. 2016, 307, 342.
(d) Zeng, J.-Y.; Wang, X.-S.; Zhang, X.-Z.; Zhuo, R.-X. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[12] (a) Cui, W. G.; Hu, T. L.; Bu, X. H. Adv. Mater. 2019, 32, 1806445.
(b) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.
[13] Sircar, S.; Mohr, R.; Ristic, C.; Rao, M. B. J. Phys. Chem. B 1999, 103, 6539.
[14] Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Langmuir 2008, 24, 8634.
[15] Schoonheydt, R. A.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2009, 11, 2794.
[16] Barnett, B. R.; Parker, S. T.; Paley, M. V.; Gonzalez, M. I.; Biggins, N.; Oktawiec, J.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 18325.
[17] Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.

[18] Kim, H.; Park, J.; Jung, Y. Phys. Chem. Chem. Phys. 2013, 15, 19644.
[19] Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.
[20] Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Angew. Chem., Int. Ed. 2017, 56, 16282.
[21] Cui, J.; Zhang, Z.; Tan, B.; Zhang, Y.; Wang, P.; Cui, X.; Xing, H. Chem. Asian. J. 2019, 14, 3572.
[22] Lange, M.; Kobalz, M.; Bergmann, J.; Lässig, D.; Lincke, J.; Möllmer, J.; Möller, A.; Hofmann, J.; Krautscheid, H.; Staudt, R.; Gläser, R. J. Mater. Chem. A 2014, 2, 8075.
[23] Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Angew. Chem., Int. Ed. 2016, 55, 13784.

[24] Liao, P.-Q.; Huang, N.-Y.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. Science 2017, 356, 1193.
[25] Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.
[26] Herm, Z. R.; Wiers, B. M.; Mason, J. A.; Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Science 2013, 340, 960.
[27] Mendes, P. A. P.; Horcajada, P.; Rives, S.; Ren, H.; Rodrigues, A. E.; Devic, T.; Magnier, E.; Trens, P.; Jobic, H.; Ollivier, J.; Maurin, G.; Serre, C.; Silva, J. A. C. Adv. Funct. Mater. 2014, 24, 7666.
[28] Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue, D. X.; Jiang, H.; Eddaoudi, M. Angew. Chem., Int. Ed. 2015, 54, 14353.
[29] Wang, H.; Dong, X.; Lin, J.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q.; Tan, K.; Wang, Q.; Olson, D. H.; Proserpio, D. M.; Chabal, Y. J.; Thonhauser, T.; Sun, J.; Han, Y.; Li, J. Nat. Commun. 2018, 9, 1745.
[30] Wang, H.; Dong, X.; Velasco, E.; Olson, D. H.; Han, Y.; Li, J. Energy Environ. Sci. 2018, 11, 1226.
[31] Ding, N.; Li, H.-W.; Wang, Q.-Y.; Wang, S.; Ma, L.; Zhou, J.-W.; Wang, B. J. Am. Chem. Soc. 2016, 138, 10100.
Outlines

/