Article

Dual-Mode Sensing of Biomarkers by Mimic Enzyme-Natural Enzyme Cascade Signal Amplification

  • Fan Lei ,
  • Jiang Qunying ,
  • Pan Min ,
  • Wang Wenxiao ,
  • Zhang Li ,
  • Liu Xiaoqing
Expand
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072

Received date: 2020-03-19

  Online published: 2020-05-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 81602610) and the Fundamental Research Funds for the Central Universities (No. 2042018kf1006).

Abstract

Highly sensitive and accurate analysis of significant biomarkers such as alkaline phosphatase (ALP) is essential for early detection and treatment of diseases. In this work, a fluorescence/UV-vis dual-mode sensing platform was constructed for amplified detection of ALP and pyrophosphate ion (PPi) based on mimic enzyme-natural enzyme cascade reactions. Cu-Based metal-organic frameworks HKUST-1 which possesses of oxidase-like activity and can effectively catalyze the oxidation of indicator o-phenylenediamine (OPD) by the surface-active sites were prepared. The oxidation products of OPD exhibit strong UV-vis absorption and fluorescent signals at 416 and 568 nm, respectively. After adding PPi, the catalytic activity of HKUST-1 was selectively inhibited due to the combination of PPi with Cu2+ on the surface of HKUST-1, that resulted in fluorescence and UV-vis signal reducing. Once ALP was introduced into the system, PPi can be specifically hydrolyzed into phosphate ions (Pi), and the oxidase-like activity of HKUST-1 recovered. Thus, the fluorescent and UV-vis signals were regenerated by an ALP-triggered mimic enzyme-natural enzyme cascade reaction. On account of the inhibition of oxidase-like activity of HKUST-1 by PPi and the recovery by ALP, an ultrasensitive dual-mode sensing platform of biomarkers based on mimic enzyme-natural enzyme cascade reactions has been developed. Under optimal conditions, the linear range of ALP by fluorescence/UV-vis detection is 0.02~3.5 and 0.04~3.5 nmol·L-1, and the detection limit of fluorescence and UV-vis assay is as low as 0.0078 and 0.039 nmol·L-1, respectively. As far as we know, it is the first time that the mimic enzyme-natural enzyme cascade reaction is applied to dual-mode bioanalysis. Due to the enzyme cascade amplification and dual-mode signal output, this developed strategy has the advantages of high sensitivity, low detection limit, high accuracy and reliability, and can realize ultrasensitive analysis of ALP in human serum samples, which shows great potential for clinical diagnosis.

Cite this article

Fan Lei , Jiang Qunying , Pan Min , Wang Wenxiao , Zhang Li , Liu Xiaoqing . Dual-Mode Sensing of Biomarkers by Mimic Enzyme-Natural Enzyme Cascade Signal Amplification[J]. Acta Chimica Sinica, 2020 , 78(5) : 419 -426 . DOI: 10.6023/A20030079

References

[1] Xiong, Y.; Chen, Y.; Ju, H. Acta Chim. Sinica 2019, 77, 1221. (熊莹莹, 陈云龙, 鞠熀先, 化学学报, 2019, 77, 1221.)
[2] Xia, L.; Cheng, Z.; Zhu, H.; Yang, Z. Acta Chim. Sinica 2019, 77, 172. (夏雷, 程震, 朱华, 杨志, 化学学报, 2019, 77, 172.)
[3] Chen, M.; Mu, L.; Cao, X.; She, G.; Shi, W. Chin. J. Chem. 2019, 37, 330.
[4] Wang, W.; Liu, Y.; Shi, T.; Sun, J.; Mo, F.; Liu, X. Anal. Chem. 2020, 92, 1598.
[5] Sun, J.; Liu, F.; Yu, W.; Jiang, Q.; Hu, J.; Liu, Y.; Wang, F.; Liu, X. Nanoscale 2019, 11, 5014.
[6] Barrozo, A.; Duarte, F.; Bauer, P.; Carvalho, A. T. P.; Kamerlin, S. C. L. J. Am. Chem. Soc. 2015, 137, 9061.
[7] Coleman, J. E. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441.
[8] Stebbing, J.; Lit, L. C.; Zhang, H.; Darrington, R. S.; Melaiu, O.; Rudraraju, B.; Giamas, G. Oncogene 2014, 33, 939.
[9] Liang, J.; Kwok, R. T. K.; Shi, H.; Tang, B. Z.; Liu, B. ACS Appl. Mater. Interfaces 2013, 5, 8784.
[10] Ronaghi, M.; Haramohamed, S.; Pettersson, B.; Uhlen, M.; Nyren, P. Anal. Biochem. 1996, 242, 84.
[11] Steinberg, K. M.; Okbu, D. T.; Zwick, M. E. Anal. Chem. 2008, 80, 520.
[12] Farre, E. M.; Geigenberger, P.; Willmitzer, L.; Trethewey, R. N. Plant Physiol. 2000, 123, 681.
[13] Dong, P.; Liu, Y.; Zhao, Y.; Wang, W.; Pan, M.; Liu, Y.; Liu, X. Sens. Actuators, B 2020, 310, 127873.
[14] Goswami, S.; Manna, A.; Paul, S.; Aich, K.; Das, A. K.; Chakraborty, S. Dalton Trans. 2013, 42, 8078.
[15] Liu, Y.; Dong, P.; Jiang, Q.; Wang, F.; Pang, D. W.; Liu, X. Sens. Actuators, B 2019, 279, 334.
[16] Zhang, J.; Liu, H.; Meng, L. Chin. J. Org. Chem. 2019, 39, 3132. (张继东, 刘鸿泽, 孟丽, 有机化学, 2019, 39, 3132.)
[17] Hayat, A.; Andreescu, S. Anal. Chem. 2013, 85, 10028.
[18] Wei, H.; Chen, C.; Han, B.; Wang, E. Anal. Chem. 2008, 80, 7051.
[19] Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. J. Am. Chem. Soc. 2016, 138, 1893.
[20] Liu, X.; Li, Y.; Liang, J.; Zhu, W.; Xu, J.; Su, R.; Yuan, L.; Sun, C. Talanta 2016, 160, 99.
[21] Wang, W.; Zhao, Y.; Jin, Y. ACS Appl. Mater. Interfaces 2013, 5, 11741.
[22] Liu, Y.; Pan, M.; Wang, W.; Jiang, Q.; Wang, F.; Pang, D. W.; Liu, X. Anal. Chem. 2019, 91, 2086.
[23] Liang, H.; Jiang, S.; Yuan, Q.; Li, G.; Wang, F.; Zhang, Z.; Liu, J. Nanoscale 2016, 8, 6071.
[24] Kou, B.; Chai, Y.; Yuan, Y.; Yuan, R. Anal. Chem. 2018, 90, 10701.
[25] Meng, X.; Fan, K.; Yan, X. Sci. China:Life Sci. 2019, 62, 1543.
[26] Li, Z.; Feng, K.; Zhang, W.; Ma, M.; Gu, N.; Zhang, Y. Chin. Sci. Bull. 2018, 63, 2128. (李卓轩, 封开政, 张薇, 马明, 顾宁, 张宇, 科学通报, 2018, 63, 2128.)
[27] Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Nat. Nanotechnol. 2007, 2, 577.
[28] Wang, Y.; He, C.; Li, W.; Zhang, J.; Fu, Y. Catal. Lett. 2017, 147, 2144.
[29] Chen, J.; Patil, S.; Seal, S.; McGinnis, J. F. Nat. Nanotechnol. 2006, 1, 142.
[30] Liu, X.; Wang, Q.; Zhao, H.; Zhang, L.; Su, Y.; Lv, Y. Analyst 2012, 137, 4552.
[31] Wang, X.; Hu, Y.; Wei, H. Inorg. Chem. Front. 2016, 3, 41.
[32] Guo, Y.; Li, W.; Zheng, M.; Huang, Y. Acta Chim. Sinica 2014, 72, 713. (郭颖, 李午戊, 郑敏燕, 黄怡, 化学学报, 2014, 72, 713.)
[33] Cheng, H.; Zhang, L.; He, J.; Guo, W.; Zhou, Z.; Zhang, X.; Nie, S.; Wei, H. Anal. Chem. 2016, 88, 5489.
[34] Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. Angew. Chem., Int. Ed. 2017, 56, 16082.
[35] Xie, J.; Cao, H.; Jiang, H.; Chen, Y.; Shi, W.; Zheng, H.; Huang, Y. Anal. Chim. Acta 2013, 796, 92.
[36] Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.
[37] Wang, H.; Yuan, S.; Zhou, M.; Guo, L. Electroanalysis 2020, 32, 648.
[38] Zhao, Y.; Pan, M.; Liu, F.; Liu, Y.; Dong, P.; Feng, J.; Shi, T.; Liu, X. Anal. Chim. Acta 2020, 1106, 133.
[39] Yang, Z. R.; Wang, M. M.; Wang, X. S.; Yin, X. B. Anal. Chem. 2017, 89, 1930.
[40] English, J. B.; Martell, A. E.; Motekaitis, R. J.; Murase, I. Inorg. Chim. Acta 1997, 258, 183.
[41] Huo, J.; Brightwell, M.; Hankari, S. E.; Garai, A.; Bradshaw, D. J. Mater. Chem. A 2013, 1, 15220.
[42] Zhu, Q.; Chen, Y.; Wang, W.; Zhang, H.; Ren, C.; Chen, H.; Chen, X. Sens. Actuators, B 2015, 210, 500.
[43] Ren, X.; Liu, J.; Ren, J.; Tang, F.; Meng, X. Nanoscale 2015, 7, 19641.
[44] Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. ACS Appl. Mater. Interfaces 2017, 9, 1352.
[45] Chen, M.; Wang, Z.; Shu, J.; Jiang, X.; Wang, W.; Shi, Z. H.; Lin, Y. W. Inorg. Chem. 2017, 56, 9400.
[46] Gao, Z.; Deng, K.; Wang, X. D.; Miró, M.; Tang, D. ACS Appl. Mater. Interfaces 2014, 6, 18243.
[47] Lee, D. H.; Kim, S. Y.; Hong, J. I. Angew. Chem., Int. Ed. 2004, 43, 4777.
Outlines

/