Article

Hierarchical Nitrogen-doped Carbon Nanocages as High-rate Long-life Cathode Material for Rechargeable Magnesium Batteries

  • Tang Gong-ao ,
  • Mao Kun ,
  • Zhang Jing ,
  • Lyu Pin ,
  • Cheng Xueyi ,
  • Wu Qiang ,
  • Yang Lijun ,
  • Wang Xizhang ,
  • Hu Zheng
Expand
  • Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Received date: 2020-01-12

  Online published: 2020-05-15

Supported by

Project supported by the jointly financial support from the National Key Research and Development Program of China (2018YFA0209100, 2017YFA0206500) and the National Natural Science Foundation of China (21773111, 21972061, 21832003, 21573107, 51571110).

Abstract

Rechargeable magnesium batteries (rMBs) are promising next-generation secondary batteries owing to the low-cost, high safety and dendrite-free property of Mg metal. The key of rMBs technology is to develop high-performance cathode materials. Usually, the intercalation-type cathodes such as Mo6S8, MoS2 and Ti3C2Tx suffer from the inferior rate performance owing to the sluggish Mg2+ ions solid-diffusion kinetics, and the conversion-type cathodes such as S and CuS are beset with the poor cycling stability owing to the pulverization and loss of active species. Recently, sp2 carbon materials exhibited considerable magnesium storage performance through an interfacial charge storage/release. Ideal carbon-based cathodes for rMBs should possess the features of high specific surface area and abundant active sites for magnesium storage, high conductivity and porous structure for facilitating charge transfer, as well as high mechanical stability. Herein, we employed the hierarchical nitrogen-doped carbon nanocages (hNCNC) featuring large surface area, abundant surface defects, coexisting micro-meso-macropores and high conductivity as the rMBs cathode for the first time, which exhibited high discharge capacity of 71 mAh·g-1 at 100 mA·g-1, excellent rate performance (60 mAh·g-1 at 2000 mA·g-1) and ultra-high cycling stability (83% capacity retention after 1000 cycles at 1000 mA·g-1). The capacitive magnesium storage mechanism is predominant in the charging-discharging process. Theoretical studies reveal that magnesium ions are adsorbed on the carbon, pyridinic-nitrogen or pyrrolic-nitrogen atoms at the edge of micropores. The excellent magnesium storage performance of hNCNC is attributed to the following reasons:(i) the hNCNC with large surface area (1590 m2·g-1), abundant micropore defects and high content of pyridinic and pyrrolic nitrogen (4.49 at.%) provides sufficient active sites for magnesium storage, resulting in the high discharge capacity; (ii) the coexisting micro-meso-macropores structure, good conductivity and improved wettability via N-doping facilitate the charge transfer kinetics, and decrease the equivalent series resistance of rMBs, thereby leading to the improved rate capability; (iii) the robust scaffold of hNCNC and the capacitive-dominated magnesium storage mechanism ensure the high cycling stability. This study demonstrates the high-rate and durable performance of hNCNC in rMBs, and suggests a promising strategy to improve the rMBs performance by increasing edges and suitable dopants of nanocarbons.

Cite this article

Tang Gong-ao , Mao Kun , Zhang Jing , Lyu Pin , Cheng Xueyi , Wu Qiang , Yang Lijun , Wang Xizhang , Hu Zheng . Hierarchical Nitrogen-doped Carbon Nanocages as High-rate Long-life Cathode Material for Rechargeable Magnesium Batteries[J]. Acta Chimica Sinica, 2020 , 78(5) : 444 -450 . DOI: 10.6023/A20010011

References

[1] Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Prog. Mater. Sci. 2014, 66, 1.
[2] Li, L.; Lu, Y.; Zhang, Q.; Zhao, S.; Hu, Z.; Chou, S. L. Small 2019, 1902767.
[3] Zhang, C. H.; Li, N. W.; Yao, H. R.; Liu, L.;Yin, Y. X.; Guo, Y. G. Acta Chim. Sinica 2017, 75, 206. (张长欢, 李念武, 姚胡蓉, 刘琳, 殷雅侠, 郭玉国, 化学学报, 2017, 75, 206.)
[4] Zheng, Y. P.; NuLi, Y.; Yang, J.; Chen, Q.; Wang, J. L. Chem. Ind. Eng. Prog. 2011, 30, 1024. (郑育培, 努丽燕娜, 杨军, 陈强, 王久林, 化工进展, 2011, 30, 1024.)
[5] Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724.
[6] NuLi, Y.; Yang, J.; Zheng, Y. P.; Wang, J. L. J. Inorg. Mater. 2011, 26, 129. (努丽燕娜, 杨军, 郑育培, 王久林, 无机材料学报, 2011, 26, 129.)
[7] Mori, T.; Masese, T.; Orikasa, Y.; Huang, Z. D.; Okado, T.; Kim, J.; Uchimoto, Y. Phys. Chem. Chem. Phys. 2016, 18, 13524.
[8] NuLi, Y.; Zheng, Y.; Wang, Y.; Yang, J.; Wang, J. J. Mater. Chem. 2011, 21, 12437.
[9] Perera, S. D.; Archer, R. B.; Damin, C. A.; Mendoza-Cruz, R.; Rhodes, C. P. J. Power Sources 2017, 343, 580.
[10] Xiao, Y.; Zou, J. X.; Guo, R.; Zeng, X. Q.; Ding, W. J. Chin. J. Power Sources 2019, 43, 1676. (肖烨, 邹建新, 郭瑞, 曾小勤, 丁文江, 电源技术, 2019, 43, 1676.)
[11] Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Langmuir 2013, 29, 10964.
[12] Liu, Y.; Jiao, L.; Wu, Q.; Du, J.; Zhao, Y.; Si, Y.; Wang, Y.; Yuan, H. J. Mater. Chem. A 2013, 1, 5822.
[13] Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273.
[14] Xu, M.; Lei, S.; Qi, J.; Dou, Q.; Liu, L.; Lu, Y.; Huang, Q.; Shi, S.; Yan, X. ACS Nano 2018, 12, 3733.
[15] Zhang, Y.; Geng, H.; Wei, W.; Ma, J.; Chen, L.; Li, C. C. Energy Storage Mater. 2019, 20, 118.
[16] Zhang, Z.; Dong, S.; Cui, Z.; Du, A.; Li, G.; Cui, G. Small Methods 2018, 2, 1800020.
[17] Wang, L.; Jiang, B.; Vullum, P. E.; Svensson, A. M.; Erbe, A.; Selbach, S. M.; Xu, H.; Vullum-Bruer, F. ACS Nano 2018, 12, 2998.
[18] Dubey, R. J.; Colijn, T.; Aebli, M.; Hanson, E. E.; Widmer, R.; Kravchyk, K. V.; Kovalenko, M. V.; Stadie, N. P. ACS Appl. Mater. Interfaces 2019, 11, 39902.
[19] Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.
[20] Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Adv. Mater. 2019, 1904177.
[21] Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W.; Liu, J.; Hu, Z. Adv. Mater. 2015, 27, 3541.
[22] Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Nano Res. 2015, 8, 3535.
[23] Cai, Y. J.; Liu, C. X.; Zhuo, O.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2017, 75, 686. (蔡跃进, 刘晨霞, 卓欧, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2017, 75, 686.)
[24] Wu, Z. S.; Ren, W.; Xu, L.; Li, F.; Cheng, H. M. ACS Nano 2011, 5, 5463.
[25] Xu, D.; Chen, C.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y.; Zhang, L. Adv. Energy Mater. 2016, 6, 1501929.
[26] Su, F.; Poh, C. K.; Chen, J. S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X. W. Energy Environ. Sci. 2011, 4, 717.
[27] Zhang, Y.; Xie, J. J.; Han, Y. L.; Li, C. L. Adv. Funct. Mater. 2015, 25, 7300.
[28] Li, T.; Qin, A.; Wang, H.; Wu, M.; Zhang, Y.; Zhang, Y.; Zhang, D.; Xu, F. Electrochim. Acta 2018, 263, 168.
[29] Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7, 1597.
[30] Liu, M.; Fan, H.; Zhuo, O.; Du, X.; Yang, L. Q.; Wang, P.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Chem. Eur. J. 2019, 25, 3843.
[31] Wang, L.; Wang, Z.; Vullum, P. E.; Selbach, S. M.; Svensson, A. M.; Vullum-Bruer, F. Nano Lett. 2018, 18, 763.
[32] Canepa, P.; Gautam, G. S.; Malik, R.; Jayaraman, S.; Rong, Z.; Zavadil, K. R.; Persson, K.; Ceder, G. Chem. Mater. 2015, 27, 3317.
[33] Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. J. Electrochem. Soc. 2008, 155, A103.
[34] Delley, B. J. Chem. Phys. 2000, 113, 7756.
[35] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
Outlines

/