Review

Research Progress of Metal-Organic Frameworks Based Antibacterial Materials

  • Qi Ye ,
  • Ren Shuangsong ,
  • Che Ying ,
  • Ye Junwei ,
  • Ning Guiling
Expand
  • a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024;
    b Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology in Liaoning Province, Dalian 116024;
    c The First Affiliated Hospital of Dalian Medical University, Dalian 116011

Received date: 2020-04-28

  Online published: 2020-05-28

Supported by

Project supported by the National Natural Science Foundation of China (Nos. U1808210, U1607101) and the Fundamental Research Funds for the Central Universities (No. DUT20LK37).

Abstract

With the accelerating process of industrialization and urbanization, as well as the increasing proportion of the elderly in the world's population, we are facing more complex health threats related to bacterial infection. While the vast majority of the bacteria in the body are rendered harmless by the protective effects of the immune system, the continued abuse and misuse of antibiotics has accelerated the spread of antibiotic-resistant bacterial strains and has resulted in substantial new challenges with respect to modern-day antibiotic-based treatments. Therefore, intelligent design of new antibacterial modalities to be used for treating human and livestock diseases is an extremely urgent priority for researchers in the fields of chemistry, chemical engineering, materials and biomedical sciences. Toward this end, the most intriguing of the new developments are metal-organic frameworks (MOFs). MOFs are versatile crystalline porous lattices of organic ligands and metal ion/clusters that formed by self-assembly via coordination bonds. Due to their unique characteristics, including relatively straight forward and simple methods for synthesis, large surface areas, novel and diverse structures, and adjustable porosity, MOFs not only play strong roles with respect to novel methods for gas storage and separation, they may also be utilized in unique applications associated with sensors mechanisms and catalysis. These features contribute to our current understanding of MOFs as promising candidates for the development of pharmaceutical and specifically antibacterial applications. In this review, antibacterial mechanisms, and the development of resistance to current antibiotic strategies are summarized and discussed. The main mechanisms by which bacteria show resistance to antibiotics include altered metabolic pathways, regulation of target sites, and inactivation, modification, and/or reduction in the capacity to accumulate antibacterial drugs. We consider recent progress on the development of MOFs, including the use of specific metal centers and ligands, metal nanoparticles, and drug-encapsulation, all of which have important applications with respect to antibacterial activities, and wound healing. Finally, the challenges and prospects of MOF-based antibacterial materials are discussed, including critical findings, which will help toward the development of the next generation antibacterial MOFs for human use.

Cite this article

Qi Ye , Ren Shuangsong , Che Ying , Ye Junwei , Ning Guiling . Research Progress of Metal-Organic Frameworks Based Antibacterial Materials[J]. Acta Chimica Sinica, 2020 , 78(7) : 613 -624 . DOI: 10.6023/A20040126

References

[1] Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Zheng, Y.; Wang, X.; Wu, S. Small 2018, 14, 1703197.
[2] Rtimi, S.; Dionysiou, D. D.; Pillai, S. C.; Kiwi, J. Appl. Catal., B 2019, 240, 291.
[3] Alseth, E. O.; Pursey, E.; Lujan, A. M.; McLeod, I.; Rollie, C.; Westra, E. R. Nature 2019, 574, 549.
[4] Tang, S.; Zheng, J. Adv. Healthcare Mater. 2018, 7, 1701503.
[5] Qi, Y.; Ye, J.; Zhang, S.; Tian, Q.; Xu, N.; Tian, P.; Ning, G. J. Alloys Compd. 2019, 782, 780.
[6] Chai, Z.; Tian, Q.; Ye, J.; Zhang, S.; Wang, G.; Qi, Y.; Che, Y.; Ning, G. J. Mater. Sci. 2020, 55, 4408.
[7] Ye, J.; Cheng, H.; Li, H.; Yang, Y.; Zhang, S.; Rauf, A.; Zhao, Q.; Ning, G. J. Colloid Interface Sci. 2017, 504, 448.
[8] Peng, K.; Ding, W.; Tu, W.; Hu, J.; Liu, C.; Yang, J. Acta Chim. Sinica 2016, 74, 713. (彭开美, 丁伟, 涂伟萍, 胡剑青, Liu Chao, Yang Jian, 化学学报, 2016, 74, 713.)
[9] Hook, A. L.; Chang, C.-Y.; Yang, J.; Atkinson, S.; Langer, R.; Anderson, D. G.; Davies, M. C.; Williams, P.; Alexander, M. R. Adv. Mater. 2013, 25, 2542.
[10] Wang, K.; He, J. Acta Chim. Sinica 2018, 76, 807. (王凯凯, 贺军辉, 化学学报, 2018, 76, 807.)
[11] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.
[12] Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int. Ed. 2005, 44, 4670.
[13] Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.
[14] Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H. Chin. J. Chem. 2019, 37, 871.
[15] Schoedel, A.; Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Chem. Rev. 2016, 116, 12466.
[16] Yaghi, O. M.; Li, H. L.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31, 474.
[17] Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156. (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[18] Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.
[19] Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.
[20] Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22. (郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
[21] Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758. (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
[22] Luo, Y.; Li, J.; Liu, X.; Tan, L.; Cui, Z.; Feng, X.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W. K.; Yang, C.; Wang, X.; Wu, S. ACS Cent. Sci. 2019, 5, 1591.
[23] Yang, Y.; Deng, Y.; Huang, J.; Fan, X.; Cheng, C.; Nie, C.; Ma, L.; Zhao, W.; Zhao, C. Adv. Funct. Mater. 2019, 29, 1900143.
[24] Yao, X.; Zhu, G.; Zhu, P.; Ma, J.; Chen, W.; Liu, Z.; Kong, T. Adv. Funct. Mater. 2020, 30, 1909389.
[25] Nasrabadi, M.; Ghasemzadeh, M. A.; Monfared, M. R. Z. New J. Chem. 2019, 43, 16033.
[26] Chen, M.; Long, Z.; Dong, R.; Wang, L.; Zhang, J.; Li, S.; Zhao, X.; Hou, X.; Shao, H.; Jiang, X. Small 2020, 16, 1906240.
[27] Alexander, F. Br. J. Exp. Pathol. 1929, 10, 226.
[28] Lacombe, S.; Rougon-Cardoso, A.; Sherwood, E.; Peeters, N.; Dahlbeck, D.; van Esse, H. P.; Smoker, M.; Rallapalli, G.; Thomma, B. P. H. J.; Staskawicz, B.; Jones, J. D. G.; Zipfel, C. Nat. Biotechnol. 2010, 28, 365.
[29] Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659. (焦阳, 张希, 化学学报, 2018, 76, 659.)
[30] Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Environ. Sci. Technol. 2015, 49, 6772.
[31] Molton, J. S.; Tambyah, P. A.; Ang, B. S. P.; Ling, M. L.; Fisher, D. A. Clin. Infect. Dis. 2013, 56, 1310.
[32] Magiorakos, A. P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M. E.; Giske, C. G.; Harbarth, S.; Hindler, J. F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D. L.; Rice, L. B.; Stelling, J.; Struelens, M. J.; Vatopoulos, A.; Weber, J. T.; Monnet, D. L. Clin. Microbiol. Infect. 2012, 18, 268.
[33] Luria, S. E.; Delbrück, M. Genetics 1943, 28, 491.
[34] Long, H.; Miller, S. F.; Strauss, C.; Zhao, C.; Cheng, L.; Ye, Z.; Griffin, K.; Te, R.; Lee, H.; Chen, C.-C.; Lynch, M. PNAS 2016, 113, E2498.
[35] Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodriguez-Rojas, A.; Blazquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I. Nat. Commun. 2013, 4, 1610.
[36] Bjedov, I.; Tenaillon, O.; Gerard, B.; Souza, V.; Denamur, E.; Radman, M.; Taddei, F.; Matic, I. Science 2003, 300, 1404.
[37] Yun, B.-R.; Malik, A.; Kim, S. B. Gene 2020, 733, 144379.
[38] Tabashnik, B. E.; Huang, F.; Ghimire, M. N.; Leonard, B. R.; Siegfried, B. D.; Rangasamy, M.; Yang, Y.; Wu, Y.; Gahan, L. J.; Heckel, D. G.; Bravo, A.; Soberon, M. Nat. Biotechnol. 2011, 29, 1128.
[39] Dey, B.; Dey, R. J.; Cheung, L. S.; Pokkali, S.; Guo, H.; Lee, J.-H.; Bishai, W. R. Nat. Med. 2015, 21, 401.
[40] Thaker, M. N.; Wang, W.; Spanogiannopoulos, P.; Waglechner, N.; King, A. M.; Medina, R.; Wright, G. D. Nat. Biotechnol. 2013, 31, 922.
[41] Dodd, M. C.; Kohler, H.-P. E.; Von Gunten, U. Environ. Sci. Technol. 2009, 43, 2498.
[42] Kim, J.; Pitts, B.; Stewart, P. S.; Camper, A.; Yoon, J. Antimicrob. Agents Chemother. 2008, 52, 1446.
[43] Yan, D.; Wu, X.; Pei, J.; Wu, C.; Wang, X.; Zhao, H. Ceram. Int. 2020, 46, 696.
[44] Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Nano Res. 2013, 6, 822.
[45] Zhu, M.; Li, X.; Ge, L.; Zi, Y.; Qi, M.; Li, Y.; Li, D.; Mu, C. Mater. Sci. Eng., C 2020, 106, 110185.
[46] Berchel, M.; Gall, T. L.; Denis, C.; Hir, S. L.; Quentel, F.; Elléouet, C.; Montier, T.; Rueff, J.-M.; Salaün, J.-Y.; Haelters, J.-P.; Hix, G. B.; Lehn, P.; Jaffrès, P.-A. New J. Chem. 2011, 35, 1000.
[47] Lu, X. Y.; Ye, J. W.; Sun, Y.; Bogale, R. F.; Zhao, L. M.; Tian, P.; Ning, G. L. Dalton Trans. 2014, 43, 10104.
[48] Lu, X. Y.; Ye, J. W.; Zhao, L. M.; Lin, Y.; Ning, G. L. J. Coord. Chem. 2014, 67, 1133.
[49] Rauf, A.; Ye, J. W.; Hao, A. Y.; Zhao, L. Y.; Zhang, S. Q.; Qi, Y.; Shi, L.; Ning, G. L. J. Coord. Chem. 2018, 71, 3266.
[50] Zhang, S.; Ye, J.; Sun, Y.; Kang, J.; Liu, J.; Wang, Y.; Li, Y.; Zhang, L.; Ning, G. Chem. Eng. J. 2020, 390, 124523.
[51] Panchal, P.; Paul, D. R.; Sharma, A.; Choudhary, P.; Meena, P.; Nehra, S. P. J. Colloid Interface Sci. 2020, 563, 370.
[52] Abendrot, M.; Checinska, L.; Kusz, J.; Lisowska, K.; Zawadzka, K.; Felczak, A.; Kalinowska-Lis, U. Molecules 2020, 25, 951.
[53] Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Nat. Commun. 2019, 10, 2177.
[54] Mallick, S.; Sharma, S.; Banerjee, M.; Ghosh, S. S.; Chattopadhyay, A.; Paul, A. ACS Appl. Mater. Interfaces 2012, 4, 1313.
[55] Chen, S.; Tang, F.; Tang, L.; Li, L. ACS Appl. Mater. Interfaces 2017, 9, 20895.
[56] Rauf, A.; Ye, J. W.; Zhang, S. Q.; Shi, L.; Akram, M. A.; Ning, G. L. Polyhedron 2019, 166, 130.
[57] Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K. W. K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Yuan, X.; Feng, X.; Yang, C.; Wu, S. Appl. Catal., B 2020, 261, 118248.
[58] Lu, X.; Ye, J.; Zhang, D.; Xie, R.; Bogale, R. F.; Sun, Y.; Zhao, L.; Zhao, Q.; Ning, G. J. Inorg. Biochem. 2014, 138, 114.
[59] Liu, Y.; Xu, X.; Xia, Q.; Yuan, G.; He, Q.; Cui, Y. Chem. Commun. 2010, 46, 2608.
[60] Kirillov, A. M.; Wieczorek, S. W.; Lis, A.; Guedes da Silva, M. F. C.; Florek, M.; Król, J.; Staroniewicz, Z.; Smoleński, P.; Pombeiro, A. J. L. Cryst. Growth Des. 2011, 11, 2711.
[61] Akbarzadeh, F.; Motaghi, M.; Chauhan, N. P. S.; Sargazi, G. Heliyon 2020, 6, e03231.
[62] Ahmad, N.; Samavati, A.; Nordin, N. A. H. M.; Jaafar, J.; Ismail, A. F.; Malek, N. A. N. N. Sep. Purif. Technol. 2020, 239, 116554.
[63] Yang, Y.; Guo, Z.; Huang, W.; Zhang, S.; Huang, J.; Yang, H.; Zhou, Y.; Xu, W.; Gu, S. Appl. Surf. Sci. 2020, 503, 144079.
[64] Qi, Y.; Ye, J.; Ren, S.; Lv, J.; Zhang, S.; Che, Y.; Ning, G. J. Hazard. Mater. 2020, 387, 121687.
[65] Abednejad, A.; Ghaee, A.; Nourmohammadi, J.; Mehrizi, A. A. Carbohydr. Polym. 2019, 222, 115033.
[66] Majumdar, D.; Das, D.; Sreejith, S. S.; Das, S.; Kumar Biswas, J.; Mondal, M.; Ghosh, D.; Bankura, K.; Mishra, D. Inorg. Chim. Acta 2019, 489, 244.
[67] Azad, F. N.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Pezeshkpour, V. Ultrason. Sonochem. 2016, 31, 383.
[68] Abbasi, A. R.; Akhbari, K.; Morsali, A. Ultrason. Sonochem. 2012, 19, 846.
[69] Zhang, Q.; Yue, C.; Zhang, Y.; Lü, Y.; Hao, Y.; Miao, Y.; Li, J.; Liu, Z. Inorg. Chim. Acta 2018, 473, 112.
[70] Usefi, S.; Akhbari, K.; White, J. J. Solid State Chem. 2019, 276, 61.
[71] Abbasloo, F.; Khosravani, S. A.; Ghaedi, M.; Dashtian, K.; Hosseini, E.; Manzouri, L.; Khorramrooz, S. S.; Sharifi, A.; Jannesar, R.; Sadri, F. Ultrason. Sonochem. 2018, 42, 237.
[72] Shi, Z.; Zhang, K.; Zada, S.; Zhang, C.; Meng, X.; Yang, Z.; Dong, H. ACS Appl. Mater. Interfaces 2020, 12, 12600.
[73] Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W. Angew. Chem., Int. Ed. 2020, 59, 1108.
[74] Zheng, X.; Wang, L.; Guan, Y.; Pei, Q.; Jiang, J.; Xie, Z. Biomaterials 2020, 235, 119792.
[75] Liu, M.; Wang, L.; Zheng, X.; Xie, Z. ACS Appl. Mater. Interfaces 2017, 9, 41512.
[76] Engell, R. E.; Lim, S. S. Lancet 2013, 381, S44.
[77] Fabrega, J.; Luoma, S. N.; Tyler, C. R.; Galloway, T. S.; Lead, J. R. Environ. Int. 2011, 37, 517.
[78] Yan, Z.; Fu, L.; Zuo, X.; Yang, H. Appl. Catal., B 2018, 226, 23.
[79] Park, C. M.; Chu, K. H.; Heo, J.; Her, N.; Jang, M.; Son, A.; Yoon, Y. J. Hazard. Mater. 2016, 309, 133.
[80] Bagheri, N.; Khataee, A.; Hassanzadeh, J.; Habibi, B. J. Hazard. Mater. 2018, 360, 233.
[81] Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 15018.
[82] Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem.-Eur. J. 2008, 14, 8456.
[83] Duan, C.; Liu, C.; Meng, X.; Gao, K.; Lu, W.; Zhang, Y.; Dai, L.; Zhao, W.; Xiong, C.; Wang, W.; Liu, Y.; Ni, Y. Carbohydr. Polym. 2020, 230, 115642.
[84] Whitford, C. L.; Stephenson, C. J.; Gomez-Gualdron, D. A.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q.; Stair, P. C. J. Phys. Chem. C 2017, 121, 25079.
[85] Mukoyoshi, M.; Kobayashi, H.; Kusada, K.; Hayashi, M.; Yamada, T.; Maesato, M.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Chem. Commun. 2015, 51, 12463.
[86] Yang, Q.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2016, 55, 3685.
[87] Guo, Y.-F.; Fang, W.-J.; Fu, J.-R.; Wu, Y.; Zheng, J.; Gao, G.-Q.; Chen, C.; Yan, R.-W.; Huang, S.-G.; Wang, C.-C. Appl. Surf. Sci. 2018, 435, 149.
[88] Cheon, Y. E.; Suh, M. P. Angew. Chem., Int. Ed. 2009, 48, 2899.
[89] Suh, M. P.; Moon, H. R.; Lee, E. Y.; Jang, S. Y. J. Am. Chem. Soc. 2006, 128, 4710.
[90] Shakya, S.; He, Y.; Ren, X.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T.; Dhakhwa, R.; Regmi, B.; Li, H.; Gref, R.; Zhang, J. Small 2019, 15, 1901065.
[91] Gao, X.; Hai, X.; Baigude, H.; Guan, W.; Liu, Z. Sci. Rep. 2016, 6, 37705.
[92] Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem., Int. Ed. 2006, 45, 5974.
[93] Li, S.; Wang, K.; Shi, Y.; Cui, Y.; Chen, B.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Zhong, C.; Wu, H.; Yang, Q.; Zhang, Q. Adv. Funct. Mater. 2016, 26, 2715.
[94] Guan, D.; Chen, F.; Qiu, Y.; Jiang, B.; Gong, L.; Lan, L.; Huang, W. Angew. Chem., Int. Ed. 2019, 58, 6678.
[95] Lin, S.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Wu, S. ACS Appl. Mater. Interfaces 2017, 9, 19248.
[96] Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.-W.; Wang, B. Small 2019, 15, 1903880.
[97] Duan, F.; Feng, X.; Jin, Y.; Liu, D.; Yang, X.; Zhou, G.; Liu, D.; Li, Z.; Liang, X.-J.; Zhang, J. Biomaterials 2017, 144, 155.
[98] Mao, D.; Hu, F.; Kenry; Ji, S.; Wu, W.; Ding, D.; Kong, D.; Liu, B. Adv. Mater. 2018, 30, 1706831.
[99] Sava Gallis, D. F.; Butler, K. S.; Agola, J. O.; Pearce, C. J.; McBride, A. A. ACS Appl. Mater. Interfaces 2019, 11, 7782.
[100] Vallabani, N. V. S.; Vinu, A.; Singh, S.; Karakoti, A. J. Colloid Interface Sci. 2020, 567, 154.
[101] Xi, J.; Wei, G.; An, L.; Xu, Z.; Xu, Z.; Fan, L.; Gao, L. Nano Lett. 2019, 19, 7645.
[102] Xi, J.; Wei, G.; Wu, Q.; Xu, Z.; Liu, Y.; Han, J.; Fan, L.; Gao, L. Biomater. Sci. 2019, 7, 4131.
[103] Ye, Y.; Xiao, L.; He, B.; Zhang, Q.; Nie, T.; Yang, X.; Wu, D.; Cheng, H.; Li, P.; Wang, Q. J. Mater. Chem. B 2017, 5, 1518.
[104] Liu, X.; Yan, Z.; Zhang, Y.; Liu, Z.; Sun, Y.; Ren, J.; Qu, X. ACS Nano 2019, 13, 5222.
Outlines

/