Account

Novel Covalent Cross-linked Nanocapsules: Fabrication, Modulation and Functions

  • Yan Tengfei ,
  • Liu Junqiu
Expand
  • a College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036;
    b College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012

Received date: 2020-05-12

  Online published: 2020-05-29

Supported by

Project supported by Key Research and Development Projects of the Ministry of Science and Technology (Nos. 2018YF09101602, 2018YFA0901600).

Abstract

Monomolecular layer polymeric nanocapsules can be easily prepared by the covalent self-assembly of the horizontal cross-linking of rigid building blocks and flexible cross-linker under certain conditions. Compared with the traditional noncovalent supramolecular vesicles, this new type of covalently self-assembled polymeric nanocapsules possess many advantages such as stable structure, controllable size, and excellent dispersibility. Therefore, it is of great significance to fabricate new covalent nanocapsules by means of chemical synthesis to realize their structural control and application exploration. Focusing on these problems, we have developed functionalized pillar[5]arene, tetraphenyl ethylene, porphyrin, triazine, phenylboronic anhydride, etc. to serve as basic building blocks, which were polymerized by flexible alkyl linkers to finally obtain the covalently cross-linked polymeric nanocapsules. Through the structural modification and regulation, we found the functionalized polymeric nanocapsules showed potential application in the field of light harvesting, artificial enzyme, antimicrobial and drug delivery. In the future, more application fields of the covalent polymeric nanocapsules are expected to be further explored.

Cite this article

Yan Tengfei , Liu Junqiu . Novel Covalent Cross-linked Nanocapsules: Fabrication, Modulation and Functions[J]. Acta Chimica Sinica, 2020 , 78(8) : 713 -718 . DOI: 10.6023/A20050164

References

[1] Lee, H.; Kim, W. I.; Youn, W.; Park, T.; Lee, S.; Kim, T. S.; Mano, J. F.; Choi, I. S. Adv. Mater. 2018, 30, 1805091.
[2] Hu, Y.; Yang, Y.; Ning, Y.; Wang, C.; Tong, Z. Colloid. Surface. B 2013, 112, 96.
[3] Sugiura, S.; Nakajima, M.; Tong, J.; Nabetani, H.; Seki, M. J. Colloid Interf. Sci. 2000, 227, 95.
[4] Nandiyanto, A. B. D.; Okuyama, K. Adv. Powder Technol. 2011, 22, 1.
[5] Li, Z. Q.; Qian, J.; Cao, X. L.; Song, X. W.; Wu, F. P. Acta Chim. Sinica 2010, 68, 181. (李振泉, 钱健, 曹绪龙, 宋新旺, 吴飞鹏, 化学学报, 2010, 68, 181.)
[6] Zhou, T. Y.; Lin, F.; Li, Z. T.; Zhao, X. Macromolecules 2013, 46, 7745.
[7] Kim, E.; Kim, D.; Jung, H.; Lee, J.; Paul, S.; Selvapalam, N.; Yang, Y.; Lim, N.; Park, C. G.; Kim, K. Angew. Chem., Int. Ed. 2010, 49, 4405.
[8] Hota, R.; Baek, K.; Yun, G.; Kim, Y.; Jung, H.; Park, K. M.; Yoon, E.; Joo, T.; Kang, J.; Park, C. G.; Bae, S. M.; Ahn, W. S.; Kim, K. Chem. Sci. 2013, 4, 339.
[9] Kim, D.; Kim, E.; Kim, J.; Park, K. M.; Baek, K.; Jung, M.; Ko, Y. H.; Sung, W.; Kim, H. S.; Suh, J. H.; Park, C. G.; Na, O. S.; Lee, D. K.; Lee, K. E.; Han, S. S.; Kim, K. Angew. Chem., Int. Ed. 2007, 46, 3471.
[10] Kim, D.; Kim, E.; Lee, J.; Hong, S.; Sung, W.; Lim, N.; Park, C. G.; Kim, K. J. Am. Chem. Soc. 2010, 132, 9908.
[11] Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H.; Park, C. G.; Sung, B. J.; Kim, K. J. Am. Chem. Soc. 2013, 135, 6523.
[12] Lee, J.; Baek, K.; Kim, M.; Yun, G.; Ko, Y. H.; Lee, N. S.; Hwang, I.; Kim, J.; Natarajan, R.; Park, C. G.; Sung, W.; Kim, K. Nat. Chem. 2014, 6, 97.
[13] Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.
[14] Yue, S. Y.; Zhou, Y. J.; Yao, Y.; Xue, M. Acta Chim. Sinica 2014, 72, 1053. (岳诗雨, 周玉娟, 姚勇, 薛敏, 化学学报, 2014, 72, 1053.)
[15] Fu, S.; An, G.; Sun, H.; Luo, Q.; Hou, C.; Xu, J.; Dong, Z.; Liu, J. Chem. Commun. 2017, 53, 9024.
[16] Fan, X.; Tian, R.; Wang, T.; Liu, S.; Wang, L.; Xu, J.; Liu, J.; Ma, M.; Wu, Z. Nanoscale 2018, 10, 22155.
[17] Fan, X.; Tian, R.; Liu, S.; Qiao, S.; Luo, Q.; Yan, T.; Fu, S.; Zhang, X.; Xu, J.; Liu, J. Polym. Chem. 2018, 9, 1160.
[18] Tian, R.; Fan, X.; Liu, S.; Li, F.; Yang, F.; Li, Y.; Luo, Q.; Hou, C.; Xu, J.; Liu, J. Macromol. Rapid Commun. 2020, 41, 1900586.
[19] van Oijen, A. M.; Ketelaars, M.; Köhler, J.; Aartsma, T. J.; Schmidt, J. Science 1999, 285, 400.
[20] Hu, X.; Damjanović, A.; Ritz, T.; Schulten, K. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 5935.
[21] McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517.
[22] Li, H.; Liu, Y.; Huang, T.; Qi, M.; Ni, Y.; Wang, J.; Zheng, Y.; Zhou, Y.; Yan, D. Macromol. Rapid Commun. 2017, 38, 1600818.
[23] Suresh, V. M.; George, S. J.; Maji, T. K. Adv. Funct. Mater. 2013, 23, 5585.
[24] Liu, S.; Jiang, S.; Xu, J.; Huang, Z.; Li, F.; Fan, X.; Luo, Q.; Tian, W.; Liu, J.; Xu, B. Macromol. Rapid Commun. 2019, 40, 1800892.
[25] Nagvenkar, A. P.; Gedanken, A. ACS Appl. Mater. Interfaces 2016, 8, 22301.
[26] Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan X. Nat. Nanotech. 2007, 2, 577.
[27] Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Angew. Chem., Int. Ed. 2012, 51, 10307.
[28] Crofts, T. S.; Gasparrini, A. J.; Dantas, G. Nat. Rev. Microbiol. 2017, 15, 422.
[29] Jennings, M. C.; Minbiole, K. P. C.; Wuest, W. M. ACS Infect. Dis. 2015, 1, 288.
[30] Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.; Nüsslein, K.; Tew, G. N. J. Am. Chem. Soc. 2008, 130, 9836.
[31] Wang, K. K.; He, J. H. Acta Chim. Sinica 2018, 76, 807. (王凯凯, 贺军辉, 化学学报, 2018, 76, 807.)
[32] Zeng, M.; Xu, J.; Luo, Q.; Hou, C.; Qiao, S.; Fu, S.; Fan, X.; Liu, J. Mat. Sci. Eng. C 2020, 108, 110383.
[33] Song, J.; Huang, P.; Duan, H.; Chen, X. Acc. Chem. Res. 2015, 48, 2506.
[34] Fu, S.; Li, F.; Zang, M.; Zhang, Z.; Ji, Y.; Yu, X.; Luo, Q.; Guan, S.; Xu, J.; Liu, J. J. Mater. Chem. B 2019, 7, 4927.
Outlines

/