Article

A Supramolecular Janus Hyperbranched Polymer and Its Electrochemically Responsive Self-Assembly Behavior

  • Qi Meiwei ,
  • Liu Yong ,
  • Zhou Yongfeng
Expand
  • School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2020-04-24

  Online published: 2020-06-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21890730, 21890733).

Abstract

Herein, we report a Janus supramolecular polymer consisting of two chemically distinct hyperbranched polymers, which is coined as Janus hyperbranched polymer (JHBP). Firstly, hydrophilic hyperbranched polyglycerol with an apex of β-cyclodextrin (CD-g-HPG) and hydrophobic hyperbranched poly(3-ethyl-3-oxetanemethanol) with an apex of a ferrocene (Fc-g-HBPO) were synthesized according to the anionic ring-opening multi-branching polymerization and cationic ring-opening polymerization, respectively. Then, amphiphilic supramolecular JHBP HBPO-b-HPG was constructed by adding H2O to cosolvent DMF through the special Fc/CD host-guest interactions and such an amphiphilic supramolecular polymer can further aggregated into assemblies. The formation and self-assembly process of supramolecular JHBP HBPO-b-HPG was tracked by dynamic light scattering (DLS). The results showed that when the volume percentage ratio of H2O/DMF was increased to 16%, the HBPO-b-HPG was formed with Dh of 5.6 nm, which is close to the size of the 1:1 complex of CD-g-HPG and Fc-g-HBPO, then, with H2O/DMF ratio continuing to increase, HBPO-b-HPG rapidly aggregated into assemblies. The 2D NOESY and cyclic voltammetry (CV) curves were also used to verify the Fc/CD host-guest complexation ability. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of the assemblies. The results showed that the HBPO-b-HPG self-assembled into unilamellar bilayer vesicles of around 260 nm. When NaCl was added after electrochemical oxidation, such vesicles could disassemble due to the cooperation of the transformation of Fc to oxidation state Fc+ and equal potential destruction. Finally, DLS tracking proved that such vesicles showed excellent stability under the conditions of heating and adding host and guest competition molecules.

Cite this article

Qi Meiwei , Liu Yong , Zhou Yongfeng . A Supramolecular Janus Hyperbranched Polymer and Its Electrochemically Responsive Self-Assembly Behavior[J]. Acta Chimica Sinica, 2020 , 78(6) : 528 -533 . DOI: 10.6023/A20040121

References

[1] Walther, A; Müller, A. H. E. Soft Matter 2008, 4, 663.
[2] de Gennes, P. G. Angew. Chem., Int. Ed. 1992, 31, 842.
[3] Hu, J.; Zhou, S. X.; Sun, Y. Y.; Fang, X. S.; Wu, L. M. Chem. Soc. Rev. 2012, 41, 4356.
[4] Du, J. Z.; O'Reilly, R. K. Chem. Soc. Rev. 2011, 40, 2402.
[5] Pang, X; Wan, C.; Wang, M.; Lin, Z. Angew. Chem., Int. Ed. 2014, 53, 5524.
[6] Chen, Q.; Whitmer, J. K.; Jiang, S.; Bae, S. C.; Luijten, E.; Granick, S. Science 2011, 311, 199.
[7] Nie, L.; Liu, S. Y.; Shen, W. M.; Chen, D. Y.; Jiang, M. Angew. Chem., Int. Ed. 2007, 46, 6321.
[8] Zhang, K. K.; Jiang, M.; Chen, D. Y. Prog. Polym. Sci. 2012, 37, 445.
[9] Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1992, 114, 8405.
[10] Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Imam, M. R.; Percec, V. Chem. Rev. 2009, 109, 6275.
[11] Saez, I. M.; Goodby, J. W. Chem. Commun. 2003, 1726.
[12] Saez, I. M.; Goodby, J. W. Chem. Eur. J. 2003, 9, 4869.
[13] Percec, V.; Iman, M. R.; Peterca, M.; Leowanawat, P. J. Am. Chem. Soc. 2012, 134, 4408.
[14] Percec, V.; Imam, M. R.; Bera, T. K.; Balagurusamy, V. S. K.; Peterca, M.; Heiney, P. A. Angew. Chem., Int. Ed. 2005, 44, 4739.
[15] Khandare, J.; Calderon, M.; Dagia, N. M.; Haag, R. Chem. Soc. Rev. 2012, 41, 2824.
[16] Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D. A.; Levine, D. H.; Kim, A. J.; Bates, F. S.; Davis, K. P.; Lodge, T. P.; Klein, M. L.; DeVane, R. H.; Aqad, E.; Rosen, B. M.; Argintaru, A. O.; Sienkowska, M. J.; Rissanen, K.; Nummelin, S.; Ropponen, J. Science 2010, 328, 1009.
[17] Peterca, M.; Percec, V.; Leowanawat, P.; Bertin, A. J. Am. Chem. Soc. 2011, 133, 20507.
[18] Flory, P. J. Am. Chem. Soc, 1952, 74, 2718.
[19] Kim, Y.; Webster, O. Polym Prepr. 1988, 29, 310.
[20] Yan, D. Y.; Gao, C. Macromolecules 2000, 33, 7693.
[21] Gao, C.; Yan, D. Y. Prog. Polym. Sci. 2004, 29, 183.
[22] Jin, H. B.; Huang, W.; Zhu, X. Y.; Zhou, Y. F.; Yan, D. Y. Chem. Soc. Rev. 2012, 41, 5986.
[23] Zhou, Y. F.; Huang, W.; Liu, J. Y.; Zhu, X. Y.; Yan, D. Y. Adv. Mater. 2010, 22, 4567.
[24] Bednarek, M.; Kubisa, P.; Penczek, S. Macromolecules 2011, 34, 5112.
[25] Ohta, Y.; Abe, Y.; Hoka, K.; Baba, E.; Lee, Y. P.; Dai, C. A.; Yokozawa, T. Polym. Chem. 2019, 10, 4246.
[26] Qie, S. Y.; Hao, Y.; Liu, Z. J.; Wang, J.; Xi, J. N. Acta Chim. Sinica 2020, 78, 232. (郄淑燕, 郝莹, 刘宗建, 王锦, 席家宁, 化学学报, 2020, 78, 232.)
[27] Hofmeier, H.; Schubert, U. S. Chem. Soc. Rev. 2004, 33, 373.
[28] Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.
[29] Zhang, X.; Wang, L. Y.; Xu, J. F.; Chen, D. Y.; Shi, L. Q.; Zhou, Y. F.; Shen, Z. H. Acta Polym. Sin. 2019, 50, 973. (张希, 王力彦, 徐江飞, 陈道勇, 史林启, 周永丰, 沈志豪, 高分子学报, 2019, 50, 973.)
[30] Liu, Y.; Yu, C. Y.; Jin, H. B.; Zhu, X. Y.; Zhou, Y. F.; Lu, Z. Y.; Yan, D. Y. J. Am. Chem. Soc. 2013, 132, 4765.
[31] Yang, L.; Guo, Y. Z.; Lei, Z. L. J. Mater. Chem. A 2015, 3, 17098.
[32] Harada, A.; Takahashi, S. J. Am. Chem. Soc. 1984, 10, 645.
[33] Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. J. Am. Chem. Soc. 1985, 107, 3411.
[34] Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Nat. Commun. 2011, 2, 511.
[35] Wang, Z. P.; Feng Z. Q.; Gao, C. Y. Chem. Mater. 2008, 20, 4194.
[36] Mai, Y. Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.
[37] Jiang, W. F.; Zhou, Y. F. Chem. Soc. Rev. 2015, 44, 3874.
[38] Sun, H.; Wang, F.; Du, J. Z. Sci. Sin. Chim. 2019, 49, 877. (孙辉, 王方英凯, 杜建忠, 中国科学:化学, 2019, 49, 877.)
[39] Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Prog. Polym. Sci. 2017, 64, 1.
[40] Atthoff, B.; Trollsås, M.; Claesson, H.; Hedrick, J. L. Macromol. Chem. Phys. 1999, 200, 1333.
[41] Strelets, V. V.; Mamedjarova, I. A.; Nefedova, M. N.; Pysnograeva, N. I.; Sokolov, V. I.; Pospís̆il, L. J. Electroanal. Chem. Interf. Electrochem. 1991, 310, 179.
[42] Du, P.; Liu, J.; Chen, G.; Jiang, M. Langmuir 2011, 27, 9602.
[43] Hong, H. Y. Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, 2009. (洪海燕, 博士论文, 上海交通大学, 上海, 2009.)
Outlines

/