Article

Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF

  • Wu Qianye ,
  • Zhang Chenxi ,
  • Sun Kang ,
  • Jiang Hai-Long
Expand
  • Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2020-05-03

  Online published: 2020-06-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21725101, 21673213, 21521001).

Abstract

Metal-organic frameworks (MOFs), a class of promising heterogeneous catalysts, though readily recyclable, usually suffer from poor dispersity and ease of sedimentation in liquid-phase reaction systems, which may lead to limited exposure of active sites and unsatisfied activity. Conventional hydrothermal synthesis often results in large MOF particles in bulk form and poor dispersity. The homogenization of MOF catalysts is an exciting but challenging task to integrate the advantages of both homogeneous and heterogeneous catalysts. Herein, by means of microwave-assisted synthetic approach, a soluble porphyrinic MOF, denoted as S-Al-PMOF, has been successfully fabricated. In contrast to the Bulk-Al-PMOF synthesized by the conventional hydrothermal route, which requires 180℃ and 16 h, the S-Al-PMOF obtained by the microwave-assisted method is very efficient and takes 30 min only at 140℃. While the as-synthesized S-Al-PMOF can be completely soluble in acetonitrile by ultrasonic dispersion to give a clear and transparent colloidal solution, the Bulk-Al-PMOF can form a turbid suspension liquid by continuous stirring, which easily aggregate with sedimentation in a short time after standing. Furthermore, the S-Al-PMOF can be easily separated from the solution by suction filtration and then re-dissolved in acetonitrile. This separation and re-dissolution process can be repeated several times to prove its good recovery and recycling. Given the outstanding light harvesting ability of Al-PMOF, photocatalytic H2 production by water splitting has been adopted to examine the activity of both S-Al-PMOF and Bulk-Al-PMOF. As a result, the activity of S-Al-PMOF is around 14 times higher than that of Bulk-Al-PMOF, owing to excellent solubility of the former. Moreover, S-Al-PMOF also exhibits good recyclability in the consecutive three cycles of reaction. We believe that the successful synthesis of soluble Al-PMOF opens a new avenue to the homogenization of heterogeneous catalysts.

Cite this article

Wu Qianye , Zhang Chenxi , Sun Kang , Jiang Hai-Long . Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF[J]. Acta Chimica Sinica, 2020 , 78(7) : 688 -694 . DOI: 10.6023/A20050141

References

[1] Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385.
[2] Copéret, C.; Chabanas, M.; Saint-Arroman, R. P.; Basset, J. M. Angew. Chem., Int. Ed. 2003, 42, 156.
[3] Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2020, 120, 623.
[4] Ye, R.; Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A. Acc. Chem. Res. 2017, 50, 1894.
[5] Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005, 44, 7852.
[6] Li, H.; Chen, G.; Duchesne, P. N.; Zhang, P.; Dai, Y.; Yang, H.; Wu, B.; Liu, S.; Xu, C.; Zheng, N. Chin. J. Catal. 2015, 36, 1560. (李欢, 陈光需, Duchesne, Paul N.; 张鹏, 代燕, 杨华艳, 吴炳辉, 刘圣洁, 许潮发, 郑南峰, 催化学报, 2015, 36, 1560.)
[7] Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43.
[8] Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Chem. Rev. 2012, 112, 1001.
[9] Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415.
[10] Qian, B.; Li, N.; Chang, Z.; Bu, X.-H. Sci. Sin. Chim. 2019, 49, 1361. (钱彬彬, 李娜, 常泽, 卜显和, 中国科学:化学, 2019, 49, 1361.)
[11] Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Adv. Mater. 2016, 28, 8819.
[12] Zhou, Z.; Xue, C.; Yang, Q.; Zhong, C. Acta Chim. Sinica 2009, 67, 477. (周子娥, 薛春瑜, 阳庆元, 仲崇立, 化学学报, 2009, 67, 477.)
[13] Yao, M.-S.; Tang, W.-X.; Wang, G.-E.; Nath, B.; Xu, G. Adv. Mater. 2016, 28, 5229.
[14] He, Y.; Tan, Y.; Zhang, J. Acta Chim. Sinica 2014, 72, 1228. (何燕萍, 谭衍曦, 张健, 化学学报, 2014, 72, 1228.)
[15] Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. W. Nat. Chem. 2017, 9, 689.
[16] Zeng, L.; Guo, X.; He, C.; Duan, C. ACS Catal. 2016, 6, 7935.
[17] Wang, Y.-R.; Huang, Q.; He, C.-T.; Chen, Y.; Liu, J.; Shen, F.-C.; Lan, Y.-Q. Nat. Commun. 2018, 9, 4466.
[18] Chen, X.; Peng, Y.; Han, X.; Liu, Y.; Lin, X.; Cui, Y. Nat. Commun. 2017, 8, 2171.
[19] Xiao, J.-D.; Li, D.; Jiang, H.-L. Sci. Sin. Chim. 2018, 48, 1058. (肖娟定, 李丹丹, 江海龙, 中国科学:化学, 2018, 48, 1058.)
[20] Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156. (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[21] Yang, W.; Liang, H.; Qiao, Z. Acta Chim. Sinica 2018, 76, 785. (杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
[22] Li, D.; Xu, H.; Jiao, L.; Jiang, H.-L. EnergyChem 2019, 1, 100005.
[23] Huang, G.; Chen, Y.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113(黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[24] Cai, G.; Ding, M.; Wu, Q.; Jiang, H.-L. Natl. Sci. Rev. 2020, 7, 37.
[25] Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
[26] Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.
[27] Zhang, P.; Li, H.; Veith, G. M.; Dai, S. Adv. Mater. 2015, 27, 234.
[28] Huang, Y.; Wang, Q.; Liang, J.; Wang, X.; Cao, R. J. Am. Chem. Soc. 2016, 138, 10104.
[29] Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Dalton Trans. 2011, 40, 321.
[30] Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. Angew. Chem., Int. Ed. 2012, 51, 7440.
[31] Sun, J.-K.; Zhan, W.-W.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2015, 137, 7063.
[32] Zhang, S.; Liu, Y.; Li, D.; Wang, Q.; Ran, F. Appl. Surf. Sci. 2020, 505, 144553.
[33] Gao, Z.-Z.; Wang, Z.-K.; Wei, L.; Yin, G.; Tian, J.; Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhang, Y.-B.; Li, X.; Liu, Y.; Li, Z.-T. ACS Appl. Mater. Interfaces 2020, 12, 1404.
[34] Luo, Y.; Peng, Y.; Liu, W.; Chen, F.; Wang, B. Chem. Eur. J. 2017, 23, 8879.
[35] Xiao, J.-D.; Shang, Q.; Xiong, Y.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2016, 55, 9389.
[36] Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem., Int. Ed. 2012, 51, 3364.
[37] Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.
[38] Liu, H.; Xu, C.; Li, D.; Jiang, H.-L. Angew. Chem., Int. Ed. 2018, 57, 5379.
[39] Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem., Int. Ed. 2012, 51, 10307.
Outlines

/