Article

Cyano-substituted Spiro[fluorine-9,9'-xanthene] Derivatives: Exciplex Emission and Property Manipulation

  • Cao Hongtao ,
  • Li Bo ,
  • Wan Jun ,
  • Yu Tao ,
  • Xie Linghai ,
  • Sun Chen ,
  • Liu Yuyu ,
  • Wang Jin ,
  • Huang Wei
Expand
  • a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China;
    b Madrid Institute for Advanced Studies in Nanoscience, IMDEA Nanociencia Calle Faraday 9, Ciudad Universitaria de Cantoblanco 28049, Spain;
    c Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China

Received date: 2020-03-31

  Online published: 2020-06-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 61605090, 61604081, 61604076, 21774061, 91833306), the Natural Science Foundation of Jiangsu Province (BK20190090, BK20180751), the Six Peak Talents Foundation of Jiangsu Province (XCL-CXTD-009) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, YX030003).

Abstract

Thermally activated delayed fluorescence (TADF) molecules have great potential in developing organic light-emitting diodes (OLEDs) because of their efficient emission and low price. Compared to pure-molecules, exciplex systems are drawing much attention since they can realize small singlet-triplet energy splitting (ΔEST) more easily for TADF. However, the species and molecular design systems of electron-acceptors for exciplex-TADF are still limited even though some acceptors have been reported. In addition, the relationship between TADF properties and the structures of acceptors requires further investigations. Herein, we report the design and synthesis of two novel spiro[fluorine-9,9'-xanthene]-based acceptors (CNSFDBX and DCNSFDBX) for achieving exciplex-emissions by using tris(4-carbazoyl-9-ylphenyl)amine (TCTA) as a donor. The photoluminescence measurements suggest that both of the doping-systems (TCTA:CNSFDBX and TCTA:DCNSFDBX) possess exciplex emissions. Whereas, it is observed that the TCTA:DCNSFDBX system displays higher photoluminescence quantum yield and electroluminescence efficiency than TCTA:CNSFDBX. For better explaining this phenomenon, we perform low-temperature fluorescence and phosphorescence spectra investigations. The experimental results show that the TCTA:DCNSFDBX system exhibits smaller ΔEST values (0.12 eV) than TCTA:CNSFDBX (0.46 eV). This results indicate that the reverse intersystem crossing from non-radiative triplet states (T1) to radiative singlet states (S1) and TADF processes can be realized more easily in the TCTA:DCNSFDBX system. Moreover, the electrochemical measurements and theoretical calculations suggest that the lowest unoccupied molecular orbital (LUMO) level of DCNSFDBX (-2.86 eV) is lower than that of CNSFDBX (-2.47 eV). This situation implies that DCNSFDBX possesses stronger electron-accepting ability than CNSFDBX with the help of dicyano-substitution. Furthermore, the TCTA:DCNSFDBX system displays larger driving force (0.39 eV) than TCTA:CNSFDBX (0.22 eV) in their exciplex-formation processes, suggesting the exciplex-emission (TCTA:DCNSFDBX) can be achieved more easily. Therefore, the higher exciplex-emission efficiencies of the TCTA:DCNSFDBX system are attributed to the stronger electron-acceptability of DCNSFDBX through dicyano- substitution and larger driving force in its exciplex emission process. This work provides a route to further development of new electron-acceptors for exciplex-TADF.

Cite this article

Cao Hongtao , Li Bo , Wan Jun , Yu Tao , Xie Linghai , Sun Chen , Liu Yuyu , Wang Jin , Huang Wei . Cyano-substituted Spiro[fluorine-9,9'-xanthene] Derivatives: Exciplex Emission and Property Manipulation[J]. Acta Chimica Sinica, 2020 , 78(7) : 680 -687 . DOI: 10.6023/A20030097

References

[1] Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[2] Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
[3] Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332.
[4] Yu, J.; Xiao, Y.; Chen, J. Chin. J. Org. Chem. 2019, 39, 3460(in Chinese). (俞佳, 肖雅方, 陈嘉雄, 有机化学, 2019, 39, 3460.)
[5] Zhang, T.; Qiu, Z.; Cheng, X.; Zhang, Y.; Wang, X. Chin. J. Org. Chem. 2019, 39, 2534(in Chinese). (张婷, 邱子夜, 程肖杰, 张雨露, 汪徐春, 有机化学, 2019, 39, 2534.)
[6] Wang, T.; Hua, X.; Yu, Y.; Yuan, Y.; Feng, M.; Jiang, Z. Chin. J. Org. Chem. 2019, 39, 1436(in Chinese). (王彤彤, 华晓晨, 郁友军, 袁熠, 冯敏强, 蒋佐权, 有机化学, 2019, 39, 1436.)
[7] He, X.; Xiao, Y.; Yuan, X.; Ye, S.; Jiang, H. Chin. J. Org. Chem. 2019, 39, 761(in Chinese). (何煦, 肖燏萍, 袁鑫磊, 叶尚辉, 姜鸿基, 有机化学, 2019, 39, 761.)
[8] Wang, F.; Cao, X.; Mei, L.; Zhang, X.; Hu, J.; Tao, Y. Chinese J. Chem. 2018, 36, 241.
[9] Lin, D.; Song, S.; Chen, Z.; Guo, P.; Chen, J.; Shi, H.; Mai, Y.; Song, H. Chin. J. Org. Chem. 2018, 38, 103(in Chinese). (林丹燕, 宋森川, 陈智勇, 郭鹏然, 陈江韩, 史华红, 麦裕良, 宋化灿, 有机化学, 2018, 38, 103.)
[10] Li, X.; Zhang, J.; Zhao, Z.; Wang, L.; Yang, H.; Chang, Q.; Jiang, N.; Liu, Z.; Bian, Z.; Liu, W.; Lu, Z.; Huang, C. Adv. Mater. 2018, 30, 1705005.
[11] Klimes, K.; Zhu, Z.-Q.; Li, J. Adv. Funct. Mater. 2019, 29, 1903068.
[12] Kim, K.-H.; Kim, J.-J. Adv. Mater. 2018, 30, 1705600.
[13] You, Y.; Park, S. Y. Dalton Trans. 2009, 1267.
[14] Cheng, G.; Kwak, Y.; To, W.-P.; Lam, T.-L.; Tong, G. S. M.; Sit, M.-K.; Gong, S.; Choi, B.; Choi, W. i.; Yang, C.; Che, C.-M. ACS Appl. Mater. Interfaces 2019, 11, 45161.
[15] Cao, H.; Shan, G.; Wen, X.; Sun, H.; Su, Z.; Zhong, R.; Xie, W.; Li, P.; Zhu, D. J. Mater. Chem. C 2013, 1, 7371.
[16] Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802.
[17] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
[18] Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nat. Rev. Mater. 2018, 3, 18020.
[19] Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Chem. Commun. 2012, 48, 9580.
[20] Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.
[21] Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
[22] Sarma, M.; Wong, K.-T. ACS Appl. Mater. Interfaces 2018, 10, 19279.
[23] Ng, T.-W.; Lo, M.-F.; Fung, M.-K.; Zhang, W.-J.; Lee, C.-S. Adv. Mater. 2014, 26, 5569.
[24] Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photon. 2012, 6, 253.
[25] Li, J.; Nomura, H.; Miyazaki, H.; Adachi, C. Chem. Commun. 2014, 50, 6174.
[26] Liu, X.-K.; Chen, Z.; Zheng, C.-J.; Liu, C.-L.; Lee, C.-S.; Li, F.; Ou, X.-M.; Zhang, X.-H. Adv. Mater. 2015, 27, 2378.
[27] Zhang, M.; Liu, W.; Zheng, C.-J.; Wang, K.; Shi, Y.-Z.; Li, X.; Lin, H.; Tao, S.-L.; Zhang, X.-H. Adv. Sci. 2019, 6, 1801938.
[28] Chapran, M.; Pander, P.; Vasylieva, M.; Wiosna-Salyga, G.; Ulanski, J.; Dias, F. B.; Data, P. ACS Appl. Mater. Interfaces 2019, 11, 13460.
[29] Cao, H.-T.; Zhao, Y.; Sun, C.; Fang, D.; Xie, L.-H.; Yan, M.-N.; Wei, Y.; Zhang, H.-M.; Huang, W. Dyes Pigm. 2018, 149, 422.
[30] Cao, H.-T.; Hong, C.-S.; Ye, D.-Q.; Liu, L.-H.; Xie, L.-H.; Chen, S.-F.; Sun, C.; Wang, S.-S.; Zhang, H.-M.; Huang, W. J. Mol. Struct. 2019, 1196, 132.
[31] Xie, L.-H.; Liu, F.; Tang, C.; Hou, X.-Y.; Hua, Y.-R.; Fan, Q.-L.; Huang, W. Org. Lett. 2006, 8, 2787.
[32] Ou, C.-J.; Ren, B.-Y.; Li, J.-W.; Lin, D.-Q.; Zhong, C.; Xie, L.-H.; Zhao, J.-F.; Mi, B.-X.; Cao, H.-T.; Huang, W. Org. Electron. 2017, 43, 87.
[33] Ou, C.-J.; Zhu, C.; Ding, X.-H.; Yang, L.; Lin, J.-Y.; Xie, L.-H.; Qian, Y.; Xu, C.-X.; Zhao, J.-F.; Huang, W. J. Mater. Chem. C 2017, 5, 5345.
[34] Iwata, S.; Tanaka, J.; Nagakura, S. J. Chem. Phys. 1967, 47, 2203.
[35] Gould, I. R.; Young, R. H.; Mueller, L. J.; Farid, S. J. Am. Chem. Soc. 1994, 116, 8176.
[36] Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; Di Marco, P. Appl. Phys. Lett. 2000, 76, 2352.
[37] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[38] Wu, T.-L.; Liao, S.-Y.; Huang, P.-Y.; Hong, Z.-S.; Huang, M.-P.; Lin, C.-C.; Cheng, M.-J.; Cheng, C.-H. ACS Appl. Mater. Interfaces 2019, 11, 19294.
Outlines

/