Review

Advances in Reactive Oxygen Species Responsive Anti-cancer Prodrugs

  • Zhang Liuwei ,
  • Chen Qixian ,
  • Wang Jingyun
Expand
  • School of Bioengineering, Dalian University of Technology, Dalian 116024

Received date: 2020-04-24

  Online published: 2020-06-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21878041) and Talent Project of Revitalizing Liaoning (XLYC1807184).

Abstract

Reactive oxygen species (ROS) are categorized as a class of instantaneous intermediate products of oxygen, which are usually produced by a single electron continuous reduction of O2. Examples include hydrogen peroxide (H2O2), superoxide anion (O2-), hydroxyl radical (HO·), hypochlorite radical (OCl-) and singlet oxygen (1O2). The endogenous ROS arise from three major resources:mitochondrial electron transport chain (Mito-ETC), endoplasmic reticulum (ER) and NADPH oxidase (NOX). The produced ROS play vital roles in physiological functions including modulation of functions of proteins, regulation of cell signaling, mediation of inflammation, and elimination of pathogens. However, the cumulative ROS level in vivo could elicit oxidative stress, which is implicated in a multitude of diseases including cancer, autoimmune diseases, inflammation, cardiovascular diseases, neurodegenerative diseases. This abnormal biochemical alteration in tumors has inspired researchers to exploit the relatively high levels of ROS for development of ROS-responsive prodrug systems. In recent years, ROS-responsive prodrug systems based on a spectrum of ROS-sensitive linkers have been designed and developed with aim of precision tumor therapy. Herein, in this review, we would like to illustrate ROS-sensitive linkers developed to date including arylboronic acid or ester, alkyl thioether or selenide, thioketal, peroxalate ester, aminoacrylate, thiazolidinone and α-ketoamide, and elucidate the underlying molecular oxidation mechanism. Furthermore, the design of ROS-responsive prodrugs based on these sensitive linkers and their applications in anti-cancer therapy were reviewed. Additionally, the existing problems and the future research perspectives of prodrug systems were also discussed.

Cite this article

Zhang Liuwei , Chen Qixian , Wang Jingyun . Advances in Reactive Oxygen Species Responsive Anti-cancer Prodrugs[J]. Acta Chimica Sinica, 2020 , 78(7) : 642 -656 . DOI: 10.6023/A20040116

References

[1] Nathan, C.; Ding, A. Cell 2010, 140, 951.
[2] D'Autreaux, B.; Toledano, M. B. Nat. Rev. Mol. Cell Biol. 2007, 8, 813.
[3] Trachootham, D.; Alexandre, J.; Huang, P. Nat. Rev. Drug Discov. 2009, 8, 579.
[4] Schumacker, P. T. Cancer Cell 2015, 27, 156.
[5] Brieger, K.; Schiavone, S.; Miller, F. J., Jr.; Krause, K. H. Swiss Med. Wkly. 2012, 142, w13659.
[6] Costa, A.; Scholer-Dahirel, A.; Mechta-Grigoriou, F. Semin. Cancer Biol. 2014, 25, 23.
[7] Nathan, C.; Cunningham-Bussel, A. Nat. Rev. Immunol. 2013, 13, 349.
[8] Martin, K. R.; Barrett, J. C. Hum. Exp. Toxicol. 2002, 21, 71.
[9] Ahsan, H.; Ali, A.; Ali, R. Clin. Exp. Immunol. 2003, 131, 398.
[10] Andersen, J. K. Nat. Med. 2004, 10, 18.
[11] Haigis, M. C.; Yankner, B. A. Mol. Cell 2010, 40, 333.
[12] Kumar, S. V.; Saritha, G.; Fareedullah, M. Ann. Biol. Res. 2010, 1, 158.
[13] Paravicini, T. M.; Touyz, R. M. Cardiovasc. Res. 2006, 71, 247.
[14] Szatrowski, T. P.; Nathan, C. F. Cancer Res. 1991, 51, 794.
[15] Wellen, K. E.; Hotamisligil, G. S. J. Clin. Invest. 2005, 115, 1111.
[16] Boveris, A.; Alvarez, S.; Bustamante, J.; Valdez, L. Methods Enzymol. 2002, 349, 280.
[17] Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Nat. Rev. Mol. Cell Biol. 2007, 8, 722.
[18] Mueller, S. Biol. Med. 2000, 29, 410.
[19] Stone, J. R.; Yang, S. Antioxid Redox Sign. 2006, 8, 243.
[20] Du, Z.; Zhang, Y.; Ye, J.; Xu, H.; Lang, M. Acta Chim. Sinica 2015, 73, 349. (杜征臻, 张琰, 叶金海, 徐衡, 郎美东, 化学学报, 2015, 73, 349.)
[21] Wu, C.; Xie, J.; Quan, J.; Zhu, L. Acta Chim. Sinica 2011, 69, 843. (吴承尧, 谢建刚, 权静, 朱利民, 化学学报, 2011, 69, 843.)
[22] Hou, J.; Li, K.; Qin, C.; Yu, X. Chin. J. Org. Chem. 2018, 38, 612. (后际挺, 李坤, 覃彩芹, 余孝其, 有机化学, 2018, 38, 612.)
[23] Jiao, C.; Liu, Y.; Lu, W.; Zhang, P.; Wang, Y. Chin. J. Org. Chem. 2019, 39, 591. (矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风, 有机化学, 2019, 39, 591.)
[24] Major Jourden, J. L.; Cohen, S. M. Angew. Chem. Int. Ed. 2010, 49, 6795.
[25] Kuang, Y.; Balakrishnan, K.; Gandhi, V.; Peng, X. J. Am. Chem. Soc. 2011, 133, 19278.
[26] Chen, W.; Fan, H.; Balakrishnan, K.; Wang, Y.; Sun, H.; Fan, Y.; Gandhi, V.; Arnold, L. A.; Peng, X. J. Med. Chem. 2018, 61, 9132.
[27] Chen, W.; Balakrishnan, K.; Kuang, Y.; Han, Y.; Fu, M.; Gandhi, V.; Peng, X. J. Med. Chem. 2014, 57, 4498.
[28] Cao, S.; Wang, Y.; Peng, X. Chemistry 2012, 18, 3850.
[29] Wang, Y.; Fan, H.; Balakrishnan, K.; Lin, Z.; Cao, S.; Chen, W.; Fan, Y.; Guthrie, Q. A.; Sun, H.; Teske, K. A.; Gandhi, V.; Arnold, L. A.; Peng, X. Eur J. Med. Chem. 2017, 133, 197.
[30] Chen, W.; Han, Y.; Peng, X. Chemistry 2014, 20, 7410.
[31] Cao, S.; Wang, Y.; Peng, X. J. Org. Chem. 2014, 79, 501.
[32] Daum, S.; Reshetnikov, M. S. V.; Sisa, M.; Dumych, T.; Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M.; Sellner, L.; Mokhir, A. Angew. Chem. Int. Ed. 2017, 56, 15545.
[33] Schikora, M.; Reznikov, A.; Chaykovskaya, L.; Sachinska, O.; Polyakova, L.; Mokhir, A. Bioorg. Med. Chem. Lett. 2015, 25, 3447.
[34] Marzenell, P.; Hagen, H.; Sellner, L.; Zenz, T.; Grinyte, R.; Pavlov, V.; Daum, S.; Mokhir, A. J. Med. Chem. 2013, 56, 6935.
[35] Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M. R.; Mokhir, A. J. Med. Chem. 2012, 55, 924.
[36] Daum, S.; Chekhun, V. F.; Todor, I. N.; Lukianova, N. Y.; Shvets, Y. V.; Sellner, L.; Putzker, K.; Lewis, J.; Zenz, T.; de Graaf, I. A.; Groothuis, G. M.; Casini, A.; Zozulia, O.; Hampel, F.; Mokhir, A. J. Med. Chem. 2015, 58, 2015.
[37] Daum, S.; Babiy, S.; Konovalova, H.; Hofer, W.; Shtemenko, A.; Shtemenko, N.; Janko, C.; Alexiou, C.; Mokhir, A. J. Inorg. Biochem. 2018, 178, 9.
[38] Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Acta Chim. Sinica 2017, 75, 538. (穆毅, 贾法龙, 艾智慧, 张礼知, 化学学报, 2017, 75, 538.)
[39] Reshetnikov, V.; Daum, S.; Mokhir, A. Chemistry 2017, 23, 5678.
[40] Reshetnikov, V.; Daum, S.; Janko, C.; Karawacka, W.; Tietze, R.; Alexiou, C.; Paryzhak, S.; Dumych, T.; Bilyy, R.; Tripal, P.; Schmid, B.; Palmisano, R.; Mokhir, A. Angew. Chem. Int. Ed. 2018, 57, 11943.
[41] Reshetnikov, V.; Arkhypov, A.; Julakanti, P. R.; Mokhir, A. Dalton Trans. 2018, 47, 6679.
[42] Ai, Y.; Obianom, O. N.; Kuser, M.; Li, Y.; Shu, Y.; Xue, F. ACS Med. Chem. Lett. 2019, 10, 127.
[43] Bhagat, S. D.; Singh, U.; Mishra, R. K.; Srivastava, A. ChemMedChem 2018, 13, 2073.
[44] Biswas, S.; Das, J.; Barman, S.; Rao Pinninti, B.; T, K. M.; Singh, N. D. P. ACS Appl. Mater. Inter. 2017, 9, 28180.
[45] Kumar, R.; Han, J.; Lim, H. J.; Ren, W. X.; Lim, J. Y.; Kim, J. H.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 17836.
[46] Kim, E. J.; Bhuniya, S.; Lee, H.; Kim, H. M.; Cheong, C.; Maiti, S.; Hong, K. S.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 13888.
[47] Wang, L.; Xie, S.; Ma, L.; Chen, Y.; Lu, W. Eur. J. Med. Chem. 2016, 116, 84.
[48] Liu, H. W.; Hu, X. X.; Li, K.; Liu, Y.; Rong, Q.; Zhu, L.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W. Chem. Sci. 2017, 8, 7689.
[49] Gao, X.; Cao, J.; Song, Y.; Shu, X.; Liu, J.; Sun, J. Z.; Liu, B.; Tang, B. Z. RSC Adv. 2018, 8, 10975.
[50] Matsushita, K.; Okuda, T.; Mori, S.; Konno, M.; Eguchi, H.; Asai, A.; Koseki, J.; Iwagami, Y.; Yamada, D.; Akita, H.; Asaoka, T.; Noda, T.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; Kasahara, Y.; Morihiro, K.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H.; Obika, S. ChemMedChem 2019, 14, 1384.
[51] Peiro Cadahia, J.; Bondebjerg, J.; Hansen, C. A.; Previtali, V.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. J. Med. Chem. 2018, 61, 3503.
[52] Previtali, V.; Petrovic, K.; Peiro Cadahia, J.; Troelsen, N. S.; Clausen, M. H. Bioorg. Med. Chem. 2020, 28, 115247.
[53] Xu, X.; Liu, K.; Jiao, B.; Luo, K.; Ren, J.; Zhang, G.; Yu, Q.; Gan, Z. J. Control. Release 2020.
[54] Li, M.; Li, S.; Chen, H.; Hu, R.; Liu, L.; Lv, F.; Wang, S. ACS Appl. Mater. Inter. 2016, 8, 42.
[55] Pei, Y.; Li, M.; Hou, Y.; Hu, Y.; Chu, G.; Dai, L.; Li, K.; Xing, Y.; Tao, B.; Yu, Y.; Xue, C.; He, Y.; Luo, Z.; Cai, K. Nanoscale 2018, 10, 11418.
[56] Luan, T.; Cheng, L.; Cheng, J.; Zhang, X.; Cao, Y.; Zhang, X.; Cui, H.; Zhao, G. ACS Appl. Mater. Inter. 2019, 11, 25654.
[57] Lin, M.; Guo, W.; Zhang, Z.; Zhou, Y.; Chen, J.; Wang, T.; Zhong, X.; Lu, Y.; Yang, Q.; Wei, Q.; Han, M.; Xu, D.; Gao, J. Mol. Pharm. 2020, 17, 499.
[58] Luo, C. Q.; Zhou, Y. X.; Zhou, T. J.; Xing, L.; Cui, P. F.; Sun, M.; Jin, L.; Lu, N.; Jiang, H. L. J. Control. Release 2018, 274, 56.
[59] Dong, C.; Zhou, Q.; Xiang, J.; Liu, F.; Zhou, Z.; Shen, Y. J. Control. Release 2020, 321, 529.
[60] Gao, F.; Wang, F.; Nie, X.; Zhang, Z.; Chen, G.; Xia, L.; Wang, L. H.; Wang, C. H.; Hao, Z. Y.; Zhang, W. J.; Hong, C. Y.; You, Y. Z. New J. Chem. 2020, 44, 3478.
[61] Wang, M.; Sun, S.; Neufeld, C. I.; Perez-Ramirez, B.; Xu, Q. Angew. Chem. Int. Ed. 2014, 53, 13444.
[62] Li, M.; Zhao, L.; Zhang, T.; Shu, Y.; He, Z.; Ma, Y.; Liu, D.; Wang, Y. Acta Pharm. Sin. B 2019, 9, 421.
[63] Luo, C.; Sun, J.; Liu, D.; Sun, B.; Miao, L.; Musetti, S.; Li, J.; Han, X.; Du, Y.; Li, L.; Huang, L.; He, Z. Nano Lett. 2017, 16, 5401.
[64] Sun, B.; Chen, Y.; Yu, H.; Wang, C.; Zhang, X.; Zhao, H.; Chen, Q.; He, Z.; Luo, C.; Sun, J. Acta Biomater. 2019, 92, 219.
[65] Luo, C.; Sun, B.; Wang, C.; Zhang, X.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H.; Sun, M.; Li, Z.; Zhang, H.; Kan, Q.; Wang, Y.; He, Z.; Sun, J. J. Control. Release 2019, 302, 79.
[66] Wang, K.; Yang, B.; Ye, H.; Zhang, X.; Song, H.; Wang, X.; Li, N.; Wei, L.; Wang, Y.; Zhang, H.; Kan, Q.; He, Z.; Wang, D.; Sun, J. ACS Appl. Mater. Inter. 2019, 11, 18914.
[67] Zhang, D.; Yang, J.; Guan, J.; Yang, B.; Zhang, S.; Sun, M.; Yang, R.; Zhang, T.; Zhang, R.; Kan, Q.; Zhang, H.; He, Z.; Shang, L.; Sun, J. Biomater. Sci. 2018, 6, 2360.
[68] Yang, J.; Lv, Q.; Wei, W.; Yang, Z.; Dong, J.; Zhang, R.; Kan, Q.; He, Z.; Xu, Y. Drug Deliv. 2018, 25, 807.
[69] Yang, B.; Wang, K.; Zhang, D.; Ji, B.; Zhao, D.; Wang, X.; Zhang, H.; Kan, Q.; He, Z.; Sun, J. RSC Adv. 2019, 9, 9260.
[70] Xu, C.; Sun, Y.; Qi, Y.; Yu, Y.; He, Y.; Hu, M.; Hu, Q.; Wu, T.; Zhang, D.; Shang, L.; Deng, H.; Zhang, Z. J. Control. Release 2018, 284, 224.
[71] Wang, J.; Sun, X.; Mao, W.; Sun, W.; Tang, J.; Sui, M.; Shen, Y.; Gu, Z. Adv. Mater. 2013, 25, 3670.
[72] Sharma, A.; Lee, M. G.; Won, M.; Koo, S.; Arambula, J. F.; Sessler, J. L.; Chi, S. G.; Kim, J. S. J. Am. Chem. Soc. 2019, 141, 15611.
[73] Yin, W.; Ke, W.; Lu, N.; Wang, Y.; Japir, A.; Mohammed, F.; Wang, Y.; Pan, Y.; Ge, Z. Biomacromolecules 2020, 21, 921.
[74] Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. J Am. Chem. Soc. 2010, 132, 442.
[75] Cao, W.; Gu, Y.; Li, T.; Xu, H. Chem. Commun. (Camb) 2015, 51, 7069.
[76] Liu, J.; Pang, Y.; Zhu, Z.; Wang, D.; Li, C.; Huang, W.; Zhu, X.; Yan, D. Biomacromolecules 2013, 14, 1627.
[77] Ma, N.; Li, Y.; Ren, H.; Xu, H.; Li, Z.; Zhang, X. Polym. Chem. 2010, 1, 1069.
[78] Ma, N.; Xu, H.; An, L.; Li, J.; Sun, Z.; Zhang, X. Langmuir 2011, 27, 5874.
[79] Tian, Y.; Zheng, J.; Tang, X.; Ren, Q.; Wang, Y.; Yang, W. Part. Part. Syst. Charact. 2015, 32, 547.
[80] Li, T.; Yi, Y.; Xu, H. Acta Chim. Sinica 2014, 72, 1079. (李天予, 易宇, 许华平, 化学学报, 2014, 72, 1079.)
[81] Pan, Z.; Zhang, J.; Ji, K.; Chittavong, V.; Ji, X.; Wang, B. Org. Lett. 2018, 20, 8.
[82] Yang, B.; Wang, K.; Zhang, D.; Sun, B.; Ji, B.; Wei, L.; Li, Z.; Wang, M.; Zhang, X.; Zhang, H.; Kan, Q.; Luo, C.; Wang, Y.; He, Z.; Sun, J. Biomater. Sci. 2018, 6, 2965.
[83] Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 4164.
[84] Ganguly, N.; Barik, S. Synthesis 2009, 2009, 1393.
[85] Ling, X.; Zhang, S.; Shao, P.; Wang, P.; Ma, X.; Bai, M. Tetrahedron Lett. 2015, 56, 5242.
[86] Wilson, D. S.; Dalmasso, G.; Wang, L.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Nat. Mater. 2010, 9, 923.
[87] Xu, C.; Song, R.; Lu, P.; Chen, J.; Zhou, Y.; Shen, G.; Jiang, M.; Zhang, W. Int. J. Nanomed. 2020, 15, 65.
[88] Li, S.; Xie, A.; Li, H.; Zou, X.; Zhang, Q. J. Control. Release 2019, 316, 66.
[89] Xu, L.; Yang, Y.; Zhao, M.; Gao, W.; Zhang, H.; Li, S.; He, B.; Pu, Y. J. Mater. Chem. B 2018, 6, 1076.
[90] Wang, Y.; Zhang, Y.; Ru, Z.; Song, W.; Chen, L.; Ma, H.; Sun, L. J. Nanobiotechnol. 2019, 17, 91.
[91] Zhao, Z.; Wang, W.; Li, C.; Zhang, Y.; Yu, T.; Wu, R.; Zhao, J.; Liu, Z.; Liu, J.; Yu, H. Adv. Funct. Mater. 2019, 29, 1909013.
[92] Zhou, F.; Feng, B.; Wang, T.; Wang, D.; Cui, Z.; Wang, S.; Ding, C.; Zhang, Z.; Liu, J.; Yu, H.; Li, Y. Adv. Funct. Mater. 2017, 27, 1703674.
[93] Yuan, Y.; Liu, J.; Liu, B. Angew. Chem. Int. Ed. 2014, 53, 7163.
[94] Xu, X.; Saw, P. E.; Tao, W.; Li, Y.; Ji, X.; Bhasin, S.; Liu, Y.; Ayyash, D.; Rasmussen, J.; Huo, M.; Shi, J.; Farokhzad, O. C. Adv. Mater. 2017, 29, 1700141.
[95] Lamb, B. M.; Barbas, C. F., 3rd Chem. Commun. (Camb) 2015, 51, 3196.
[96] Wang, G.; Zhou, Z.; Zhao, Z.; Li, Q.; Wu, Y.; Yan, S.; Shen, Y.; Huang, P. ACS Nano 2020, 14, 4890.
[97] Ke, W.; Lu, N.; Japir, A.; Zhou, Q.; Xi, L.; Wang, Y.; Dutta, D.; Zhou, M.; Pan, Y.; Ge, Z. J. Control. Release 2020, 318, 67.
[98] Yin, W.; Ke, W.; Chen, W.; Xi, L.; Zhou, Q.; Mukerabigwi, J. F.; Ge, Z. Biomaterials 2019, 195, 63.
[99] Ke, W.; Li, J.; Mohammed, F.; Wang, Y.; Tou, K.; Liu, X.; Wen, P.; Kinoh, H.; Anraku, Y.; Chen, H.; Kataoka, K.; Ge, Z. ACS Nano 2019, 13, 2357.
[100] Wang, S.; Yu, G.; Wang, Z.; Jacobson, O.; Lin, L. S.; Yang, W.; Deng, H.; He, Z.; Liu, Y.; Chen, Z. Y.; Chen, X. Angew. Chem. Int. Ed. 2019, 58, 14758.
[101] Han, K.; Zhu, J. Y.; Wang, S. B.; Li, Z. H.; Cheng, S. X.; Zhang, X. Z. J. Mater. Chem. B 2015, 3, 8065.
[102] Pei, P.; Sun, C.; Tao, W.; Li, J.; Yang, X.; Wang, J. Biomaterials 2019, 188, 74.
[103] Phua, S. Z. F.; Xue, C.; Lim, W. Q.; Yang, G.; Chen, H.; Zhang, Y.; Wijaya, C. F.; Luo, Z.; Zhao, Y. Chem. Mater. 2019, 31, 3349.
[104] Xia, X.; Yang, X.; Huang, P.; Yan, D. ACS Appl. Mater. Inter. 2020, 12, 18301.
[105] Shi, S.; Zhang, L.; Zhu, M.; Wan, G.; Li, C.; Zhang, J.; Wang, Y.; Wang, Y. ACS Appl. Mater. Inter. 2018, 10, 29260.
[106] Ling, X.; Zhang, S.; Liu, Y.; Bai, M. J. Biomed. Opt. 2018, 23, 1.
[107] Liu, L. H.; Qiu, W. X.; Li, B.; Zhang, C.; Sun, L. F.; Wan, S. S.; Rong, L.; Zhang, X. Z. Adv. Funct. Mater. 2016, 26, 6257.
[108] Li, J.; Li, Y.; Wang, Y.; Ke, W.; Chen, W.; Wang, W.; Ge, Z. Nano Lett. 2017, 17, 6983.
[109] Kwon, J.; Kim, J.; Park, S.; Khang, G.; Kang, P. M.; Lee, D. Biomacromolecules 2013, 14, 1618.
[110] Qiao, Z.; Liu, H. Y.; Zha, J. C.; Mao, X. X.; Yin, J. Polym. Chem. 2019, 10, 4305.
[111] Berwin Singh, S. V.; Jung, E.; Noh, J.; Yoo, D.; Kang, C.; Hyeon, H.; Kim, G. W.; Khang, G.; Lee, D. Nanomedicine 2019, 16, 45.
[112] Höcherl, A.; Jäger, E.; Jäger, A.; Hrubý, M.; Konefał, R.; Janoušková, O.; Spěváček, J.; Jiang, Y.; Schmidt, P. W.; Lodge, T. P.; Štěpánek, P. Polym. Chem. 2017, 8, 1999.
[113] Ou, K.; Kang, Y.; Chen, L.; Zhang, X.; Chen, X.; Zheng, Y.; Wu, J.; Guan, S. Biomater. Sci. 2019, 7, 2491.
[114] Wang, S.; Wang, Z.; Yu, G.; Zhou, Z.; Jacobson, O.; Liu, Y.; Ma, Y.; Zhang, F.; Chen, Z.; Chen, X. Adv. Sci. 2019, 6, 1700141.
[115] Li, J.; Ke, W.; Wang, L.; Huang, M.; Yin, W.; Zhang, P.; Chen, Q.; Ge, Z. J. Control. Release 2016, 225, 64.
[116] Dai, L.; Li, X.; Duan, X.; Li, M.; Niu, P.; Xu, H.; Cai, K.; Yang, H. Adv. Sci. 2019, 6, 1801807.
[117] Bio, M.; Nkepang, G.; You, Y. Chem. Commun. (Camb) 2012, 48, 6517.
[118] Hossion, A. M.; Bio, M.; Nkepang, G.; Awuah, S. G.; You, Y. ACS Med. Chem. Lett. 2013, 4, 124.
[119] Bio, M.; Rajaputra, P.; Nkepang, G.; You, Y. J. Med. Chem. 2014, 57, 3401.
[120] Rajaputra, P.; Bio, M.; Nkepang, G.; Thapa, P.; Woo, S.; You, Y. Bioorg. Med. Chem. 2016, 24, 1540.
[121] Thapa, P.; Li, M.; Bio, M.; Rajaputra, P.; Nkepang, G.; Sun, Y.; Woo, S.; You, Y. J. Med. Chem. 2016, 59, 3204.
[122] Bio, M.; Rajaputra, P.; Lim, I.; Thapa, P.; Tienabeso, B.; Hurst, R. E.; You, Y. Chem. Commun. (Camb) 2017, 53, 1884.
[123] Li, M.; Thapa, P.; Rajaputra, P.; Bio, M.; Peer, C. J.; Figg, W. D.; You, Y.; Woo, S. J. Pharmacokinet. Pharmacodyn. 2017, 44, 521.
[124] Bio, M.; Rajaputra, P.; Nkepang, G.; Awuah, S. G.; Hossion, A. M.; You, Y. J. Med. Chem. 2013, 56, 3936.
[125] Nkepang, G.; Bio, M.; Rajaputra, P.; Awuah, S. G.; You, Y. Bioconjug. Chem. 2014, 25, 2175.
[126] Thapa, P.; Li, M.; Karki, R.; Bio, M.; Rajaputra, P.; Nkepang, G.; Woo, S.; You, Y. ACS Omega 2017, 2, 6349.
[127] Perez, C.; Monserrat, J. P.; Chen, Y.; Cohen, S. M. Chem. Commun. (Camb) 2015, 51, 7116.
[128] Andersen, N. S.; Peiro Cadahia, J.; Previtali, V.; Bondebjerg, J.; Hansen, C. A.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. Eur. J. Med. Chem. 2018, 156, 738.
[129] Meng, T.; Han, J.; Zhang, P.; Hu, J.; Fu, J.; Yin, J. Chem. Sci. 2019, 10, 7156.
Outlines

/