Article

Study on the Upconversion Luminescence Mechanism of Tegtragonal LiYF4: RE with Sublattice Energy Cluster Construction and Crystal Field Manipulation

  • Huang Qingming
Expand
  • Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350108, China

Received date: 2020-05-09

  Online published: 2020-06-11

Supported by

Project supported by the Natural Science Foundation of Fujian Province (No. 2017J01688).

Abstract

Lanthanide ions doped tetragonal LiYF4 has became an investigative focus of upconversion luminescence (UCL) materials for its well properties of multi-photon UCL and as a comparable matrix material with hexagonal NaYF4. While the cause for its well performance on short bands emission is still unrevealed. After the exploration of crystal structure characteristic of tetragonal LiYF4, a hexagonal circle sublattice structure of Y3+ with 0.3710 nm interval between adjacent Y3+ ions and larger than 0.5 nm interval between meta-position and para-position Y3+ ions were revealed. The energy transfer of rare earth ions are easy take place around the hexagonal circles or among the cluster of five adjacent trivalent ions. Base on the sublattice structure characteristic of tetragonal LiYF4, we have an idea to study UCL mechanism systematically of tetragonal LiYF4:RE by the construction of sublattice energy cluster 1M-xYb (M=Er, Ho, Tm) and the manipulation of crystal field symmetry by introducing different amount Yb3+ ions and Sc3+ or Hf4+ ions, respectively. Hydrothermal method was employed to prepare LiY0.98-xYbxEr0.02F4, LiY0.98-xYbxHo0.02F4, LiY0.995-xYbxTm0.005F4, LiY0.68-xYb0.3Er0.02ScxF4 and LiY0.68-xYb0.3Er0.02HfxF4 series samples. A typical preparation process demonstrate as follows, at first, (1-x) mmol Y(NO3)3 (0.2 mol/L), x mmol (x=0.2, 0.5, 0.7 and 0.9) Yb(NO3)3 (0.20 mol/L) and Er(NO3)3 (0.02 mmol) solution was dropwise added into 20 mL deionized (DI) water with 1 mmol EDTA to form a solution under vigorous stirring for 30 min. Secondly, 3.0 mL LiOH (1.0 mol/L) and 4.0 mL NH4HF2(1.0 mol/L) aqueous solution were dropwise added to the solution under thorough stirring for 30 min until the solution completely became a white emulsion, the pH value of the emulsion is 3~4. Finally, the white emulsion was slowly transferred into a 50 mL Teflon-lined autoclave, sealed and heated at 190℃ for 18 h. The final products were collected by centrifugation, and then washed with DI water several times. The collected samples were dried at 60℃ over night. X-ray powder diffraction (XRD) and Rietveld refinement method were employed to reveal the variation of crystal structure, field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) were employed to the analysis of crystal morphology and crystal structure. UCL performance was analyzed by Edinburgh fluorescence spectrophotometer FSP920. After investigation, we found excited energy levels distribution of different RE ions is diverse, and the level matching with Yb3+ are different too, it result in different luminescence quenching of energy cross relaxation, so the different sublattice energy clusters 1Er-2Yb, 1Ho-2Yb and 1Tm-4Yb of different active rare earth ions can be constructed for the best UCL performance. The cystal field symmetry of tetragonal LiYF4:Yb/Er were manipulated successfully by 6 mol% Sc3+ or 4 mol% Hf4+ doping, and UCL intensity were enhanced about 50% with 6 mol% Sc3+, while the UCL intensity were weaken after Hf4+ doping. After Sc3+ or Hf4+ doping, there are only three Yb3+ ions in the five trivalence ions cluster that can't realize two-photon cooperation upconversion synchronous electron population of 4F5/2 excited state level of Er3+ ions and 2G7/2 or 4F5/2o excited state level of Sc3+ or Hf4+ respevticely, and then Sc3+ and Hf4+ ions become a quenching center in the asymmetric crystal field that is conversed with them doped hexagonal NaYF4:Yb/Er that Sc3+ and Hf4+ ions were taken as energy storage ions and dramatically enhanced UCL performance. In this work, the UCL mechanism of sublattice energy cluster construction and crystal field manipulation were revealed that may be an inspiration for high efficient UC luminescence materials design and preparation.

Cite this article

Huang Qingming . Study on the Upconversion Luminescence Mechanism of Tegtragonal LiYF4: RE with Sublattice Energy Cluster Construction and Crystal Field Manipulation[J]. Acta Chimica Sinica, 2020 , 78(9) : 968 -979 . DOI: 10.6023/A20050154

References

[1] Auzel, F. Chem. Rev. 2004, 104, 139.
[2] Yao, W.; Tian, Q.; Wu, W. Adv. Opt. Mater. 2019, 7, 1801171.
[3] Ju, D.; Song, F.; Zhang, J.; Ming, C.; Song, F.; Khan, A.; Zhou, A.; Wang, X.; Liu, L. J. Alloys Compd. 2019, 770, 1181.
[4] Han, Y.; Li, H.; Wang, Y.; Pan, Y.; Huang, L.; Song, F.; Huang, W. Sci. Rep. 2017, 7, 1320.
[5] Wiesholler, L. M.; Hirsch, T. Opt. Mater. 2018, 80, 253.
[6] Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese). (熊麟, 凡勇, 张凡, 化学学报, 2019, 77, 1239.)
[7] Xu, J.; Gulzar, A.; Yang, P.; Bi, H.; Yang, D.; Gai, S.; He, F.; Lin, J.; Xing, B.; Jin, D. Coord. Chem. Rev. 2019, 381, 104.
[8] Li, H.; Tan, M.; Wang, X.; Li, F.; Zhang, Y.; Zhao, L.; Yang, C.; Chen, G. J. Am. Chem. Soc. 2020, 142, 2023.
[9] Wei, Y.; Yang, X.; Ma, Y.; Wang, S.; Yuan, Q. Chin. J. Chem. 2016, 34, 558.
[10] Qiu, H.; Tan, M.; Ohulchanskyy, T. Y.; Lovell, J. F.; Chen, G. Nanomaterials 2018, 8, 344.
[11] Lu, F.; Yang, L.; Ding, Y.; Zhu, J.-J. Adv. Funct. Mater. 2016, 26, 4778.
[12] Lee, G.; Park, Y. I. Nanomaterials 2018, 8, 511.
[13] Duan, C.; Liang, L.; Li, L.; Zhang, R.; Xu, Z. P. J. Mater. Chem. B 2018, 6, 192.
[14] Day, J.; Senthilarasu, S.; Mallick, T. K. Renewable Energy 2019, 132, 186.
[15] Qin, X.; Xu, J.; Wu, Y.; Liu, X. ACS Cent. Sci. 2019, 5, 29.
[16] Chen, Y.; Zou, L.; Zhang, X.; Huang, Q.; Yu, H. ChemistrySelect 2019, 4, 4262.
[17] Lv, Y.; Yue, L.; Li, Q.; Shao, B.; Zhao, S.; Wang, H.; Wu, S.; Wang, Z. Dalton Trans. 2018, 47, 1666.
[18] Ullah, S.; Hazra, C.; Ferreira-Neto, E. P.; Silva, T. C.; Rodrigues-Filho, U. P.; Ribeiro, S. J. L. Crystengcomm 2017, 19, 3465.
[19] Gao, W.; Tian, B.; Zhang, W.; Zhang, X.; Wu, Y.; Lu, G. Appl. Catal. B-Environ. 2019, 257, 117908.
[20] Boppella, R.; Mota, F. M.; Lim, J. W.; Kochuveedu, S. T.; Ahn, S.; Lee, J.; Kawaguchi, D.; Tanaka, K.; Kim, D. H. ACS Appl. Energy Mater. 2019, 2, 3780.
[21] Borges, M. E.; Sierra, M.; Mendez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Esparza, P. Sol. Energy Mater. Sol. Cells 2016, 155, 194.
[22] Kakavelakis, G.; Petridis, K.; Kymakis, E. J. Mater. Chem. A 2017, 5, 21604.
[23] Chen, X.; Xu, W.; Song, H.; Chen, C.; Xia, H.; Zhu, Y.; Zhou, D.; Cui, S.; Dai, Q.; Zhang, J. ACS Appl. Mater. Interfaces 2016, 8, 9071.
[24] Schulze, T. F.; Schmidt, T. W. Energy Environ. Sci. 2015, 8, 103.
[25] Goldschmidt, J. C.; Fischer, S. Adv. Opt. Mater. 2015, 3, 510.
[26] Lei, P.; An, R.; Zhai, X.; Yao, S.; Dong, L.; Xu, X.; Du, K.; Zhang, M.; Feng, J.; Zhang, H. J. Mater. Chem. C 2017, 5, 9659.
[27] Chen, D. Q.; Xu, M.; Huang, P. Sensor. Actuat. B-Chem. 2016, 231, 576.
[28] Reddy, K. L.; Balaji, R.; Kumar, A.; Krishnan, V. Small 2018, 14,1.
[29] Gulzar, A.; Xu, J.; Yang, P.; He, F.; Xu, L. Nanoscale 2017, 9, 12248.
[30] Cheng, C.; Xu, Y.; Liu, S.; Liu, Y.; Wang, X.; Wang, J.; De, G. J. Mater. Chem. C 2019, 7, 8898.
[31] Judd, B. R. Phys. Rev. 1962, 127, 750.
[32] Huang, Q.; Yu, J.; Ma, E.; Lin, K. J. Phys. Chem. C 2010, 114, 4719.
[33] Guo, Y.; Zeng, H.; Jiang, Y.; Qi, G.; Chen, G.; Chen, J.; Sun, L. J. Lumin. 2019, 214, 116524.
[34] Lin, H.; Xu, D.; Teng, D.; Yang, S.; Zhang, Y. Opt. Mater. 2015, 45, 229.
[35] Huang, Q.; Yu, H.; Ma, E.; Zhang, X.; Cao, W.; Yang, C.; Yu, J. Inorg. Chem. 2015, 54, 2643.
[36] Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. Adv. Mater. 2010, 22, 3266.
[37] Zhao, J.; Chen, X.; Chen, B.; Luo, X.; Sun, T.; Zhang, W.; Wang, C.; Lin, J.; Su, D.; Qiao, X.; Wang, F. Adv. Funct. Mater. 2019, 29, 1903295.
[38] Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Nat. Mater. 2011, 10, 968.
[39] Goncalves, J. M.; Guillot, P.; Caiut, J. M. A.; Caillier, B. J. Mater. Sci.-Mater. El. 2019, 30, 16724.
[40] Xu, W.; Xu, S.; Zhu, Y.; Liu, T.; Bai, X.; Dong, B.; Xu, L.; Song, H. Nanoscale 2012, 4, 6971.
[41] Zhang, W. H.; Ding, F.; Chou, S. Y. Adv. Mater. 2012, 24, 236.
[42] Zhao, J.; Jin, D.; Schartner, E. P.; Lu, Y.; Liu, Y.; Zvyagin, A. V.; Zhang, L.; Dawes, J. M.; Xi, P.; Piper, J. A.; Goldys, E. M.; Monro, T. M. Nat. Nanotechnol. 2013, 8, 729.
[43] Liu, M.; Wu, Q.; Shi, H.; An, Z.; Huang, W. Acta Chim. Sinica 2018, 76, 246(in Chinese). (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.)
[44] Wang, J.; Deng, R.; MacDonald, M. A.; Chen, B.; Yuan, J.; Wang, F.; Chi, D.; Hor, T. S. A.; Zhang, P.; Liu, G.; Han, Y.; Liu, X. Nat. Mater. 2014, 13, 157.
[45] Huang, Q. J. Alloys Compd. 2020, 821, 153544.
[46] Purohit, B.; Guyot, Y.; Amans, D.; Joubert, M.-F.; Mahler, B.; Mishra, S.; Daniele, S.; Dujardin, C.; Ledoux, G. ACS Photonics 2019, 6, 3126.
[47] Shin, J.; Kyhm, J.-H.; Hong, A. R.; Song, J. D.; Lee, K.; Ko, H.; Jang, H. S. Chem. Mater. 2018, 30, 8457.
[48] Huang, Q.; Yu, H.; Zhang, X.; Cao, W.; Yu, J. Acta Chim. Sinica 2016, 74, 191(in Chinese). (黄清明, 俞瀚, 张新奇, 曹文兵, 俞建长, 化学学报, 2016, 74, 191.)
[49] Fisher, B. R.; Eisler, H. J.; Stott, N. E.; Bawendi, M. G. J. Phys. Chem. B 2004, 108, 143.
[50] Ofelt, G. S. J. Chem. Phys. 1962, 37, 511.
Outlines

/