Article

Design, Synthesis and Field Effect Characteristics of Diazulene Diimides Bridged by Aromatic Group

  • Hou Bin ,
  • Li Jing ,
  • Xin Hanshen ,
  • Yang Xiaodi ,
  • Gao Honglei ,
  • Peng Peizhen ,
  • Gao Xike
Expand
  • a Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
    b Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Received date: 2020-05-11

  Online published: 2020-06-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21522209, 21790362) and the Science and Technology Commission of Shanghai Municipality (Nos. 19XD1424700, 18JC1410600).

Abstract

Azulene, a bicyclic nonbenzenoid aromatic hydrocarbon, shows completely different physicochemical properties compared with its isomeric naphthalene. Herein, we made use of the diverse reactivity of each position on azulene to design a new synthetic strategy for azulene-based diimides bridged by phenyl or thieno[3,2-b]thiophenyl group, 2-(azulen-2'-yl)-5-(azulen-2''-yl)benzene-1,1':4,1''-tetracarboxylic diimides (AzAzBDI-1/2) and 2-(azulen-2'-yl)-5- (azulen-2''-yl)thieno[3,2-b]thiophene-3,1':6,1''-tetracarboxylic diimide (AzAzTTDI). The key step was double trifluoroacetylation at 1-position of two azulene moieties of the molecule followed by hydrolysis, anhydridization and imidization to obtain the target compounds. The single crystal structure analysis demonstrates that AzAzBDI-2 has twisted molecular backbone. The adjacent two molecules form a dimer through the intermolecular π-π stacking (0.365 nm) between the five-membered ring and the seven-membered ring of two different azulene units. Strong π-π intermolecular interactions (0.355 nm) exist among the dimers to form a slipped one-dimensional (1D) packing motif in the crystal. For three compounds, the optoelectronic properties were investigated by UV-vis absorption spectra and cyclic voltammetry, and their energy levels of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and the energy gaps were calculated. The HOMO/LUMO energy levels of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI are -5.56/-3.28 eV, -5.56/ -3.30 eV and -5.57/-3.42 eV, respectively. The end absorptions of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI in thin films show obvious red-shift (13, 13 and 25 nm) relative to those in CHCl3 solution, indicating strong intermolecular interactions in solid state. The charge carrier transport properties of three compounds were studied through organic field-effect transistors (OFETs). Bottom-gate and top-contact OFET devices of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI were fabricated by spin-coated their respective solution on octadecyltrimethoxysilane (OTMS)-treated SiO2/Si substrates. Under nitrogen atmosphere, all of these three compounds displayed electron-dominated ambipolar organic semiconductor characteristics. The electron mobilities of AzAzBDI-1 and AzAzBDI-2 were 0.068 cm2·V-1·s-1 and 0.086 cm2·V-1·s-1 and the hole mobility were 3.1×10-4 cm2·V-1·s-1 and 1.5×10-3 cm2·V-1·s-1, respectively. OFETs based on AzAzTTDI showed the highest electron mobility and hole mobilities of 0.087 cm2·V-1·s-1 and 8.8×10-3 cm2·V-1·s-1, respectively. The X-ray diffraction (XRD) and atomic force microscopy (AFM) studies demonstrate thin films of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI show better crystallinity and form larger size of microstructures by annealing, which is consistent with the enhanced device performance after thermal annealing.

Cite this article

Hou Bin , Li Jing , Xin Hanshen , Yang Xiaodi , Gao Honglei , Peng Peizhen , Gao Xike . Design, Synthesis and Field Effect Characteristics of Diazulene Diimides Bridged by Aromatic Group[J]. Acta Chimica Sinica, 2020 , 78(8) : 788 -796 . DOI: 10.6023/A20050161

References

[1] (a) Wheland, G. W.; Mann, D. E. J. Chem. Phys. 1949, 17, 264. (b) Anderson, A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81, 4941.
[2] Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.
[3] Beer, M.; Longuet-Higgins, H. C. J. Chem. Phys. 1955, 23, 1390.
[4] Kasha, M. Faraday Soc. 1950, 9, 14.
[5] (a) Wang, D.; Dong, Z.; Xu, J.; Li, D. Chin. J. Org. Chem. 2013, 33, 1559 (in Chinese). (王道林, 董哲, 徐姣, 李帝, 有机化学, 2013, 33, 1559.) (b) Yang, F.; Wang, H.; Zhang, L.; Shi, W.; Zhang, P.; Li, Y.; Yin, S. Chin. J. Org. Chem. 2011, 31, 2106 (in Chinese). (杨芳, 王海峰, 张露昀, 石万棋, 张萍, 李颖, 尹述凡, 有机化学, 2011, 31, 2106.) (c) Wang, D.; Han, S.; Huang, X.; Gu, Z. Chin. J. Org. Chem. 2009, 29, 1659 (in Chinese). (王道林, 韩珊, 黄孝东, 谷峥, 有机化学, 2009, 29, 1659.) (d) Wang, D.; Xu, J.; Han, S.; Gu, Z. Chin. J. Org. Chem. 2008, 28, 2016 (in Chinese). (王道林, 徐姣, 韩珊, 谷峥, 有机化学, 2008, 28, 2016.) (e)Asato, A. E.; Peng, A.; Hossain, M. Z.; Mirzadegan, T.; Bertram, J. J. Med. Chem. 1993, 36, 3137. (f) Becker, D. A.; Ley, J. J.; Echegoyen, L.; Alvarado, R. J. Am. Chem. Soc. 2002, 124, 4678.
[6] (a) Smits, E. C. P.; Setayesh, S.; Anthopoulos, T. D.; Buechel, M.; Nijssen, W.; Coehoorn, R.; Blom, P. W. M.; de Boer, B.; de Leeuw, D. M. Adv. Mater. 2007, 19, 734. (b) Wobkenberg, P. H.; Labram, J. G.; Swiecicki, J.-M.; Parkhomenko, K.; Sredojevic, D.; Gisselbrecht, J.-P.; de Leeuw, D. M.; Bradley, D. D. C.; Djukic, J.-P.; Anthopoulos, T. D. J. Mater. Chem. 2010, 20, 3673. (c) Yamaguchi, Y.; Maruya, Y.; Katagiri, H.; Nakayama, K.-i.; Ohba, Y. Org. Lett. 2012, 14, 2316. (d) Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-i.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095. (e) Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.-i.; Koganezawa, T.; Katagiri, H. J. Am. Chem. Soc. 2016, 138, 11335. (f) Yao, J.; Cai, Z.; Liu, Z.; Yu, C.; Luo, H.; Yang, Y.; Yang, S.; Zhang, G.; Zhang, D. Macromolecules 2015, 48, 2039. (g) Xin, H.; Ge, C.; Fu, L.; Yang, X.; Gao, X. Chin. J. Org. Chem. 2017, 37, 711 (in Chinese). (辛涵申, 葛从伍, 傅丽娜, 杨笑迪, 高希珂, 有机化学, 2017, 37, 711.)
[7] (a) Umeyama, T.; Watanabe, Y.; Miyata, T.; Imahori, H. Chem. Lett. 2015, 44, 47. (b) Chen, Y.; Zhu, Y.; Yang, D.; Zhao, S.; Zhang, L.; Yang, L.; Wu, J.; Huang, Y.; Xu, Z.; Lu, Z. Chem. Eur. J. 2016, 22, 14527. (c) Puodziukynaite, E.; Wang, H. W.; Lawrence, J.; Wise, A. J.; Russell, T. P.; Barnes, M. D.; Emrick, T. J. Am. Chem. Soc. 2014, 136, 11043.
[8] (a) Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656. (b) Truong, M. A.; Lee, J.; Nakamura, T.; Seo, J. Y.; Jung, M.; Ozaki, M.; Shimazaki, A.; Shioya, N.; Hasegawa, T.; Murata, Y.; Zakeeruddin, S. M.; Grätzel, M.; Murdey, R.; Wakamiya, A. Chem. Eur. J. 2019, 25, 6741.
[9] (a) Asato, A. E.; Liu, R. S. H.; Rao, V. P.; Cai, Y. M. Tetrahedron Lett. 1996, 37, 419. (b) Iftime, G.; Lacroix, P. G.; Nakatani, K.; Razus, A. C. Tetrahedron Lett. 1998, 39, 6853. (c) Lacroix, P. G.; Malfant, I.; Iftime, G.; Razus, A. C.; Nakatani, K.; Delaire, J. A. Chem. Eur. J. 2000, 6, 2599. (d) Coe, B. J.; Harris, J. A.; Asselberghs, I.; Clays, K.; Olbrechts, G.; Persoons, A.; Hupp, J. T.; Johnson, R. C.; Coles, S. J.; Hursthouse, M. B.; Nakatani, K. Adv. Funct. Mater. 2002, 12, 110. (e) Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.; Asselberghs, I.; Clays, K.; Razus, A. C. Chem. Mater. 2004, 16, 3543. (f) Migalska-Zalas, A.; El kouari, Y.; Touhtouh, S. Opt. Mater. 2012, 34, 1639. (g) Herrmann, R.; Pedersen, B.; Wagner, G.; Youn, J.-H. J. Organomet. Chem. 1998, 571, 261.
[10] (a) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2006, 45, 3944. (b) Wang, F. K.; Lin, T. T.; He, C. B.; Chi, H.; Tang, T.; Lai, Y. H. J. Mater. Chem. 2012, 22, 10448. (c) Ince, M.; Bartelmess, J.; Kiessling, D.; Dirian, K.; Martinez-Diaz, M. V.; Torres, T.; Guldi, D. M. Chem. Sci. 2012, 3, 1472.
[11] (a) Ito, S.; Morita, N. Eur. J. Org. Chem. 2009, 4567. (b) Dong, J.; Zhang, H. Chin. Chem. Lett. 2016, 27, 1097. (c) Xin, H.; Gao, X. ChemPlusChem 2017, 82, 945. (d) Ou, L.; Zhou, Y.; Wu, B.; Zhu, L. Chin. Chem. Lett. 2019, 30, 1903.
[12] Lemal, D. M.; Goldman, G. D. J. Chem. Educ. 1988, 65, 923.
[13] Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F. Adv. Mater. 1996, 8, 242.
[14] (a) Yang, N.; Qiao, X.; Fang, R.; Tao, J.; Hao, J.; Li, H. Acta Chim. Sinica 2016, 74, 335 (in Chinese). (杨宁, 乔小兰, 房忍忍, 陶竞炜, 郝健, 李洪祥, 化学学报, 2016, 74, 335.) (b) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679. (c) Gao, X. K.; Di, C. A.; Hu, Y. B.; Yang, X. D.; Fan, H. Y.; Zhang, F.; Liu, Y. Q.; Li, H. X.; Zhu, D. B. J. Am. Chem. Soc. 2010, 132, 3697. (d) Wang, Y.; Guo, H.; Ling, S.; Arrechea-Marcos, I.; Wang, Y.; López Navarrete, J. T.; Ortiz, R. P.; Guo, X. Angew. Chem., Int. Ed. 2017, 56, 9924.
[15] (a) Jia, T.; Zheng, N.; Cai, W.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75, 808 (in Chinese). (贾涛, 郑楠楠, 蔡万清, 应磊, 黄飞, 化学学报, 2017, 75, 808.) (b) Gupta, M.; Yan, D.; Shen, F.; Xu, J.; Zhan, C. Acta Phys.-Chim. Sin. 2019, 35, 496 (in Chinese). (GUPTA Monika, 闫东, 沈福刚, 徐建中, 詹传郎, 物理化学学报, 2019, 35, 496.) (c) Deng, Y.; Peng, A.; Wu, X.; Chen, H.; Huang, H. Acta Phys.-Chim. Sin. 2019, 35, 461 (in Chinese). (邓祎华, 彭爱东, 吴筱曦, 陈华杰, 黄辉, 物理化学学报, 2019, 35, 461.) (d) Zhou, S.; Feng, G.; Xia, D.; Li, C.; Wu, Y.; Li, W. Acta Phys.-Chim. Sin. 2018, 34, 344 (in Chinese). (周士超, 冯贵涛, 夏冬冬, 李诚, 武永刚, 李韦伟, 物理化学学报, 2018, 34, 344.) (e) Ma, Z.; Winands, T.; Liang, N.; Meng, D.; Jiang, W.; Doltsinis, N. L.; Wang, Z. Sci. China Chem. 2020, 63, 208. (f)Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H. Nat. Energy 2016, 1, 16089.
[16] Guo, X.; Facchetti, A.; Marks, T. J. Chem. Rev. 2014, 114, 8943.
[17] Xin, H.; Ge, C.; Yang, X.; Gao, H.; Yang, X.; Gao, X. Chem. Sci. 2016, 7, 6701.
[18] (a) Xin, H.; Li, J.; Ge, C.; Yang, X.; Xue, T.; Gao, X. Mater. Chem. Front. 2018, 2, 975. (b) Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322.
[19] Gao, H.; Yang, X.; Xin, H.; Gao, T.; Gong, H.; Gao, X. Chin. J. Org. Chem. 2018, 38, 2680 (in Chinese). (高洪磊, 杨笑迪, 辛涵申, 高铁阵, 龚和贵, 高希珂, 有机化学, 2018, 38, 2680.)
[20] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Gaussian, Inc., Wallingford CT, 2016.
[21] Brown, A. R.; Jarrett, C. P.; deLeeuw, D. M.; Matters, M. Synth. Met. 1997, 88, 37.
[22] (a) Lei, T.; Dou, J.; Pei, J. Adv. Mater. 2012, 24, 6457. (b) Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C. A.; Gao, X.; McNeill, C. R.; Thomsen, L. S.; Mannsfeld, C.; Yuan, W.; Sirringhaus, H.; Zhu, D. J. Am. Chem. Soc. 2013, 135, 2338.
Outlines

/