Review

Recent Progress of Organocatalyzed Group Transfer Polymerization

  • Chen Yougen ,
  • Ding Yuansheng
Expand
  • Institute for Advanced Study, Shenzhen University, Shenzhen 518060

Received date: 2020-04-24

  Online published: 2020-06-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 21604057), Natural Science Foundation of SZU (No. 000215), Shenzhen Science and Technology Research Grant (No. JCYJ20190808154011907).

Abstract

Group transfer polymerization (GTP) is a living polymerization method for acrylic-derived monomers developed by DuPont after living anionic polymerization in the 1980s. The acrylic-derived monomers mainly include acrylate, methacrylate, acrylamide and acrylonitrile. The elementary initiation and propagation reactions in GTP are all rooted in the Mukaiyama-Michael addition reaction. Therefore, in principle both base and acid can sever as the catalyst for GTP. Before the small molecular organocatalyst is applied to the polymerization method, the normally used base has been a soluble ionic compound containing a sterically hindered cation, in which the nucleophilic anion acts as the true catalyst. The normally used acid has been a metal or transition metal compound having Lewis acidity. Since 2007, small organic bases and acids have been gradually used to catalyze GTP, and this type of polymerization has been named as organocatalyzed GTP. Compared with the conventional one, organocatalyzed GTP has made a great improvement in the aspects of molecular weight and molecular weight distribution control of acrylic polymers, scope of polymerizable monomers, topological design of polymer, etc. This review mainly focuses on the author's recent work and will be discussed from four aspects: GTP using organic strong base, GTP using organic strong acid, a novel hydrosilane-based GTP, and polymerization mechanism.

Cite this article

Chen Yougen , Ding Yuansheng . Recent Progress of Organocatalyzed Group Transfer Polymerization[J]. Acta Chimica Sinica, 2020 , 78(8) : 733 -745 . DOI: 10.6023/A20040115

References

[1] Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
[2] MacMillan, D. W. C. Nature 2008, 455, 304.
[3] Xiao, Y.; Wang, Y.; Zhou, Z. Chinese J. Org. Chem. 2019, 39, 2203.
[4] Wang, L.; Lin, G.; Zhao, M.; Liu, D.; Jin, Y. Chinese J. Org. Chem. 2018, 38, 642 (in Chinese). (王黎明, 林赓, 赵美君, 刘东垚, 金瑛, 有机化学, 2018, 38, 642.)
[5] Ma, S.; Zhong, Y.; Wang, S.; Xu, Z.; Chang, M.; Wang, R. Acta Chim. Sinica 2014, 72, 825 (in Chinese). (马世雄, 钟源, 王守磊, 许兆青, 常民, 王锐, 化学学报, 2014, 72, 825.)
[6] Zhao, H.; Meng, W.; Yang, Z.; Tian, T.; Sheng, Z.; Li, H.; Song, X.; Zhang, Y.; Yang, S.; Li, B. Chinese J. Chem. 2014, 32, 417.
[7] Nederberg, F.; Connor, E. F.; Möller, F.; Glauser, M. T.; Hedrick, J. L. Angew. Chem. Int. Ed. 2001, 40, 2712.
[8] Misaka, H.; Kakuchi, R.; Zhang, C. H.; Sakai, R.; Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 5091.
[9] Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 13798.
[10] Miyake, G. M.; Chen, E. Y.-X. Macromolecules 2011, 44, 4116.
[11] Sanda, F.; Sanada, H.; Shibasaki, Y.; Endo, T. Macromolecules 2002, 35, 680.
[12] Persson, P. V.; Schroder, J.; Wickholm, K.; Hedenstrom, E.; Iversen, T. Macromolecules 2004, 37, 5889.
[13] Oledzka, E.; Narine, S. S. J. Appl. Polym. Sci. 2011, 119, 1873.
[14] Makiguchi, K.; Satoh, T.; Kakuchi, T. Macromolecules 2011, 44, 1999.
[15] Gazeau-Bureau, S.; Delcroix, D.; Martin-Vaca, B.; Bonrissou, D.; Navarro, C.; Magnet, S. Macromolecules 2008, 41, 3782.
[16] Bourissou, D.; Martin-Vaca, B.; Dumitrescu, A.; Graullier, M.; Lacombe, F. Macromolecules 2005, 38, 9993.
[17] Kadota, J.; Pavlović, D.; Desvergne, J.; Bibal, B.; Peruch, F.; Deffieux, A. Macromolecules 2010, 43, 8874.
[18] Helou, M.; Miserque, O.; Brusson, J.; Carpentier, J.; Guillaume, S. M. Chem. Eur. J. 2010, 16, 13805.
[19] Connor, E. F.; Nyce, G. W.; Myers, M.; Mock, A.; Hedrick, J. L. J. Am. Chem. Soc. 2002, 124, 914.
[20] Nyce, G. W.; Glauser, T.; Connor, E. F.; Mock, A.; Waymouth, R. M.; Hedrick. J. L. J. Am. Chem. Soc. 2003, 125, 3046.
[21] Coulembier, O.; Dove, A. P.; Pratt, R. C.; Sentman, A. C.; Culkin, D. A.; Mespouille, L.; Dubois, P.; Waymouth, R. M.; Hedrick, J. L. Angew. Chem. Int. Ed. 2005, 44, 4964.
[22] Csihony, S.; Culkin, D. A.; Sentman, A. C.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 9079.
[23] Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Macromolecules 2007, 40, 4154.
[24] Nederberg, F.; Lohmeijer, B. G. G.; Leibfarth, F.; Pratt, R. C.; Choi, J.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L. Biomacromolecules 2007, 8, 153.
[25] Lohmeijer, B. G. G.; Dubois, G.; Leibfarth, F.; Pratt, R. C.; Nederberg, F.; Nelson, A.; Waymouth, R. M.; Wade, C. G.; Hedrick, J. L. Org. Lett. 2006, 8, 4683.
[26] Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Macromolecules 2007, 40, 4154.
[27] Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. J. Am. Chem. Soc. 2007, 129, 12610.
[28] Webster, O. W.; Hertler, W. R.; Sogah, D. Y.; Farnham, W. B.; RajanBabu, T. V. J. Am. Chem. Soc. 1983, 105, 5706.
[29] Webster, O. W. Adv. Polym. Sci. 2004, 167, 1.
[30] Schubert, W.; Bandermann, F. Makromol. Chem. 1989, 190, 2161.
[31] Schubert, W.; Sitz, H. D.; Bandermann, F. Makromol. Chem. 1989, 190, 2193.
[32] Sogah, D. Y.; Hertler, W. R.; Webster, O. W.; Cohen, G. M. Macromolecules 1987, 20, 1473.
[33] Schubert, W.; Bandermann, F. Makromol. Chem. 1989, 190, 2721.
[34] Hertler, W. R.; Sogah, D. Y.; Webster, O. W. Macromolecules 1984, 17, 1415.
[35] Hellstern, A. M.; DeSimone, J. M.; McGrath, J. E. Polym. Prepr. 1988, 29, 342.
[36] Dicker, I. B.; Cohen, G. M.; Farnham, W. B.; Hertler, W. R.; Laganis, E. D.; Sogah, D. Y. Macromolecules 1990, 23, 4034.
[37] Patrickios, C. S.; Hertler, W. R.; Abbott, N. L.; Hatton, T. A. Macromolecules 1994, 27, 930.
[38] Eggert, M.; Freitag, R. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 803.
[39] Ute, K.; Tarao, T.; Hongo, S.; Ohnuma, K.; Hatada, K.; Kitayama, T. Polym. J. 1999, 31, 177.
[40] Ute, K.; Ohnuma, H.; Shimizu, I.; Kitayama, T. Polym. J. 2006, 38, 999.
[41] Dicker, I. B. Polym. Prepr. 1988, 29, 114.
[42] Zhuang, R.; Müller, A. H. E. Macromol. Symp. 1994, 85, 379.
[43] Zhuang, R.; Müller, A. H. E. Macromolecules 1995, 28, 8035.
[44] Zhuang, R.; Müller, A. H. E. Macromolecules 1995, 28, 8043.
[45] Ute, K.; Tarao, T.; Hatada, K. Polymer 1997, 44, 7869.
[46] Ute, K.; Tarao, T.; Kitayama, T. Polym. J. 2005, 37, 578.
[47] White, D.; Matyjaszewski, K. Polym. Prepr. 1995, 36, 286.
[48] Fuchise, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Polym. Chem. 2013, 4, 4278.
[49] Raynaud, J.; Ciolino, A.; Baceiredo, A.; Destarac, M.; Bonnette, F.; Kato, T.; Gnanou, Y.; Taton, D. Angew. Chem. Int. Ed. 2008, 47, 5390.
[50] Scholten, M. D.; Hedrick, J. L.; Waymouth, R. M. Macromolecules 2008, 41, 7399.
[51] Raynaud, J.; Liu, N.; Gnanou, Y.; Taton, D. Macromolecules 2010, 43, 8853.
[52] Raynaud, J.; Liu, N.; Fèvre, M.; Gnanou, Y.; Taton, D. Polym. Chem. 2011, 2, 1706.
[53] Scholten, M. D.; Hedrick, J. L.; Waymouth, R. M. Polym. Prepr. 2007, 48, 167.
[54] Raynaud, J.; Gnanou, Y.; Taton, D. Macromolecules 2009, 42, 5996.
[55] Raynaud, J.; Gnanou, Y.; Taton, D. PMSE Prepr. 2009, 101, 1771.
[56] Zhang, Y.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2012, 51, 2465.
[57] Fèvre, M.; Vignolle, J.; Heroguez, V.; Taton, D. Macromolecules 2012, 45, 7711.
[58] Zhang, Y.; Chen, E. Y.-X. Macromolecules 2008, 41, 36.
[59] Zhang, Y.; Chen, E. Y.-X. Macromolecules 2008, 41, 6353.
[60] Miyake, G. M.; Zhang, Y.; Chen, E. Y.-X. Macromolecules 2010, 43, 4902.
[61] Zhang, Y.; Gustafson, O.; Chen, E. Y-X. J. Am. Chem. Soc. 2011, 133, 13674.
[62] Chen, E. Y.-X. Chem. Rev. 2009, 109, 5157.
[63] Zhang, Y.; Lay, F.; García-García, P.; List, B. Chem. Eur. J. 2010, 16, 10462.
[64] Kakuchi, T.; Chen, Y.-G.; Kitakado, J.; Mori, K.; Fuchise, K.; Satoh, T. Macromolecules 2011, 44, 4641.
[65] Chen, Y.-G.; Takada, K.; Kubota, N.; Eric, O.-T.; Ito, T.; Isono, T.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 1830.
[66] Eric, O.-T.; Chen, Y.-G.; Takada, K.; Sato, S.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 7841.
[67] Chen, Y.-G.; Fuchise, K.; Kawaguchi, S.; Satoh, T.; Kakuchi, T. Macromolecules 2011, 44, 9091.
[68] Hsu, J.-C.; Chen, Y.-G.; Kakuchi, T.; Chen, W.-C. Macromolecules 2011, 44, 5168.
[69] Kikuchi, S.; Chen, Y.-G.; Fuchise, K.; Takada, K.; Kitakado, J.; Sato, S.; Satoh, T.; Kakuchi, T. Polym. Chem. 2014, 5, 4701.
[70] Kakuchi, R.; Chiba, K.; Fuchise, K.; Sakai, R.; Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 8747.
[71] Chen, Y.-G.; Takada, K.; Fuchise, K.; Satoh, T.; Kakuchi, T. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3277.
[72] Takada, K.; Fuchise, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3560.
[73] Takada, K.; Ito, T.; Kitano, K.; Tuschida, S.; Takagi, Y.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Macromolecules 2015, 48, 511.
[74] Takada, K.; Fuchise, K.; Kubota, N.; Ito, T.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Macromolecules 2014, 47, 5514.
[75] Fuchise, K.; Sakai, R.; Satoh, T.; Sato, S.; Narumi, A.; Kawaguchi, S.; Kakuchi, T. Macromolecules 2010, 43, 5589.
[76] Fuchise, K.; Chen, Y.-G.; Takada, K.; Satoh, T.; Kakuchi, T. Macromol. Chem. Phys. 2012, 213, 1604.
[77] Kikuchi, S.; Chen, Y.-G.; Kitano, K.; Takada, K.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 6845.
[78] Kikuchi, S.; Chen, Y.-G.; Ichinohe, E.; Sato, S.; Duan, Q.; Shen, X.-D.; Kakuchi, T. Macromolecules 2016, 49, 4828.
[79] Fuchise, K.; Tsuchida, S.; Takada, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. ACS Macro. Lett. 2014, 3, 1015.
[80] Chen, Y.-G.; Kitano, K.; Tsuchida, S.; Kikuchi, S.; Takada, K.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 3502.
[81] Kikuchi, S.; Chen, Y.-G.; Kitano, K.; Satoh, T.; Kakuchi, T. Macromolecules 2016, 49, 3049.
[82] Chen, Y.-G.; Jia, Q.; Ding, Y.,; Sato, S.; Xu, L.; Zang, C.;, Shen, X.; Kakuchi, T. Macromolecules 2019, 52, 844.
[83] Chen Y.-G.; Kakuchi, T. Chem. Rec. 2016, 16, 2161.
[84] Chen, Y.-G.; Shen, X.-D.; Kakuchi, T. Journal of The Adhesion Society of Japan, 2017, 53, 432. (陳友根, 沈賢徳, 覚知豊次, 日本接着学会誌, 2017, 53, 432.)
[85] Chen, Y.-G.; Fuchise, K.; Satoh, T.; Kakuchi, T. In Anionic Polymerization: Principles, Practice, Strength, Consequences, and Applications, Springer, Tokyo, 2015, pp. 451~494.
Outlines

/