Review

Mechanically Interlocked Structures within Reticular Frameworks

  • Wang Youfu ,
  • Liu Hanghai ,
  • Zhu Xinyuan
Expand
  • School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2020-05-07

  Online published: 2020-06-16

Supported by

Project supported by the National Natural Science Foundation of China (No. 21805130) and the Science and Technology Commission of Shanghai Municipality (Nos. 18JC1410800, 17ZR1441300).

Abstract

The reticular frameworks have crystalline and extended porous structures, which can not only orderly organize a variety of building blocks to form mesoscopic materials in a programmable way, but also perform an excellent platform for basic scientific research because of the regulatable and precise structures. The representative systems of reticular frameworks are metal organic frameworks (MOFs) and covalent organic frameworks (COFs). Mechanically interlocked structures are molecular aggregations interacted through mechanical bond to realize complex functions. The combination of reticular frameworks and mechanically interlocked structures can promote the basic research of the microscopic interlocked behaviors in solid states; and also organize the interlocked structures in a regular way to achieve more complex functions. The mechanically interlocked structures can be introduced into reticular frameworks in two strategies, using mechanically interlocked structures as building blocks participating in the construction of reticular frameworks; and forming woven or interlocked frameworks with whole interlocked skeleton from unlocked precursors. This review summarizes the important progresses in the emerging research field combining the reticular frameworks and mechanically interlocked structures. In the first section, after the brief introduction of reticular frameworks and mechanically interlocked structures respectively, the significances and strategies of the combination of the above two fields is described. In the second section, we reveal the systematic and representative research of mechanically interlocked structure as a part of building blocks participating in the construction of reticular frameworks, including rotaxane, shuttle and catenate. The mechanical motions of rotaxanes and shuttle within MOFs are intensively studied. The representative methods and structures of introducing rotaxane or catenate into reticular frameworks are presented. In the third section, we exhibit the reticular frameworks constructed through mechanical bond as the main interaction within the whole skeleton from unlocked precursors, including resilient woven frameworks and mechanically interlocked frameworks. The typical woven or interlocked frameworks are mostly templated from special metal complexes and showing reversible transition between crystal and non-crystal maintaining the whole interlocked skeleton. Finally, we summarize the whole paper and discuss the future development in this crossing field, such as the applications of these combined systems should be expanded and the mechanically interlocked frameworks constructed through interlocking discrete molecular rings are expected due to the potential excellent elastic properties.

Cite this article

Wang Youfu , Liu Hanghai , Zhu Xinyuan . Mechanically Interlocked Structures within Reticular Frameworks[J]. Acta Chimica Sinica, 2020 , 78(8) : 746 -757 . DOI: 10.6023/A20050147

References

[1] (a) Rungtaweevoranit, B.; Diercks, C. S.; Kalmutzki, M. J.; Yaghi, Omar M. Faraday Discuss. 2017, 201, 9. (b) Yaghi, O. M. Mol. Front. J. 2019, 3, 66.
[2] (a) Li, B.; Chrzanowski, M.; Zhang, Y.; Ma, S. Coord. Chem. Rev. 2016, 307, 106. (b) Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. Trac-Trends Anal. Chem. 2019, 118, 401. (c) Liu, Z.; Li, W.; Liu, H.; Zhuang, X.; Li, S. Acta Chim. Sinica 2019, 77, 323. (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.) (d) Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156. (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.) (e) Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242. (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.) (f) Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.
[3] (a) Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 16068. (b) Lohse, M. S.; Bein, T. Adv. Funct. Mater. 2018, 28, 1705553. (c) Pang, C.; Luo, S.; Hao, Z.; Gao, J.; Huang, Z.; Yu, J.; Yu, S.; Wang, C. Chin. J. Org. Chem. 2018, 38, 2606. (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[4] (a) Denis, M.; Goldup, S. M. Nat. Rev. Chem. 2017, 1, 0061. (b) Mena-Hernando, S.; Pérez, E. M. Chem. Soc. Rev. 2019, 48, 5016.
[5] Stoddart, J. F. Angew. Chem. Int. Ed. 2017, 56, 11094.
[6] Leigh, D. A.; Pritchard, R. G.; Stephens, A. J. Nat. Chem. 2014, 6, 978.
[7] (a) Beves, J. E.; Blight, B. A.; Campbell, C. J.; Leigh, D. A.; McBurney, R. T. Angew. Chem. Int. Ed. 2011, 50, 9260. (b) Forgan, R. S.; Sauvage, J.-P.; Stoddart, J. F. Chem. Rev. 2011, 111, 5434.
[8] (a) Niu, Z.; Gibson, H. W. Chem. Rev. 2009, 109, 6024. (b) Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Science 2017, 358, 1434.
[9] (a) Jiang, X.; Duan, H.-B.; Khan, S. I.; Garcia-Garibay, M. A. ACS Cent. Sci. 2016, 2, 608. (b) Vogelsberg, C. S.; Uribe-Romo, F. J.; Lipton, A. S.; Yang, S.; Houk, K. N.; Brown, S.; Garcia-Garibay, M. A. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13613. (c) Gonzalez-Nelson, A.; Coudert, F.-X.; van der Veen, M. A. Nanomaterials 2019, 9, 330.
[10] Danowski, W.; van Leeuwen, T.; Abdolahzadeh, S.; Roke, D.; Browne, W. R.; Wezenberg, S. J.; Feringa, B. L. Nat. Nanotechnol. 2019, 14, 488.
[11] Martinez-Bulit, P.; Stirk, A. J.; Loeb, S. J. Trends in Chemistry 2019, 1, 588.
[12] (a) Hoffart, D. J.; Loeb, S. J. Angew. Chem. Int. Ed. 2005, 44, 901. (b) Loeb, S. J. Chem. Commun. 2005, 1511. (c) Vukotic, V. N.; Loeb, S. J. Chem. Soc. Rev. 2012, 41, 5896. (d) Yang, J.; Ma, J.-F.; Batten, S. R. Chem. Commun. 2012, 48, 7899.
[13] Vukotic, V. N.; Harris, K. J.; Zhu, K.; Schurko, R. W.; Loeb, S. J. Nat. Chem. 2012, 4, 456.
[14] Vukotic, V. N.; O’Keefe, C. A.; Zhu, K.; Harris, K. J.; To, C.; Schurko, R. W.; Loeb, S. J. J. Am. Chem. Soc. 2015, 137, 9643.
[15] Zhu, K.; Vukotic, V. N.; O’Keefe, C. A.; Schurko, R. W.; Loeb, S. J. J. Am. Chem. Soc. 2014, 136, 7403.
[16] Farahani, N.; Zhu, K.; O'Keefe, C. A.; Schurko, R. W.; Loeb, S. J. ChemPlusChem 2016, 81, 836.
[17] Zhu, K.; O'Keefe, C. A.; Vukotic, V. N.; Schurko, R. W.; Loeb, S. J. Nat. Chem. 2015, 7, 514.
[18] Jonathan, C.; David, R.; Cory M., S. ChemRxiv 2019, doi.org/ 10.26434/chemrxiv.9942095.v1
[19] Coskun, A.; Hmadeh, M.; Barin, G.; Gándara, F.; Li, Q.; Choi, E.; Strutt, N. L.; Cordes, D. B.; Slawin, A. M. Z.; Stoddart, J. F.; Sauvage, J. P.; Yaghi, O. M. Angew. Chem. Int. Ed. 2012, 51, 2160.
[20] Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Chem. Soc. Rev. 2014, 43, 5896.
[21] McGonigal, P. R.; Deria, P.; Hod, I.; Moghadam, P. Z.; Avestro, A.-J.; Horwitz, N. E.; Gibbs-Hall, I. C.; Blackburn, A. K.; Chen, D.; Botros, Y. Y.; Wasielewski, M. R.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K.; Stoddart, J. F. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 11161.
[22] Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. Nat. Protoc. 2016, 11, 149.
[23] (a) Li, Q.; Zhang, W.; Miljanić, O. Š.; Sue, C.-H.; Zhao, Y.-L.; Liu, L.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Science 2009, 325, 855. (b) Zhang, H.; Zou, R.; Zhao, Y. Coord. Chem. Rev. 2015, 292, 74.
[24] Sue, A. C.-H.; Mannige, R. V.; Deng, H.; Cao, D.; Wang, C.; Gándara, F.; Stoddart, J. F.; Whitelam, S.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5591.
[25] Li, Q.; Zhang, W.; Miljanić, O. Š.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Chem. Commun. 2010, 46, 380.
[26] Li, Q.; Sue, C.-H.; Basu, S.; Shveyd, A. K.; Zhang, W.; Barin, G.; Fang, L.; Sarjeant, A. A.; Stoddart, J. F.; Yaghi, O. M. Angew. Chem. Int. Ed. 2010, 49, 6751.
[27] Cao, D.; Juríček, M.; Brown, Z. J.; Sue, A. C.-H.; Liu, Z.; Lei, J.; Blackburn, A. K.; Grunder, S.; Sarjeant, A. A.; Coskun, A.; Wang, C.; Farha, O. K.; Hupp, J. T.; Stoddart, J. F. Chem.-Eur. J. 2013, 19, 8457.
[28] Lewis, J. E. M. Org. Biomol. Chem. 2019, 17, 2442.
[29] Chen, Q.; Sun, J.; Li, P.; Hod, I.; Moghadam, P. Z.; Kean, Z. S.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K.; Stoddart, J. F. J. Am. Chem. Soc. 2016, 138, 14242.
[30] (a) Wang, Z.; Błaszczyk, A.; Fuhr, O.; Heissler, S.; Wöll, C.; Mayor, M. Nat. Commun. 2017, 8, 14442. (b) Champsaur, A. M.; Mézière, C.; Allain, M.; Paley, D. W.; Steigerwald, M. L.; Nuckolls, C.; Batail, P. J. Am. Chem. Soc. 2017, 139, 11718. (c) Lewandowska, U.; Zajaczkowski, W.; Corra, S.; Tanabe, J.; Borrmann, R.; Benetti, E. M.; Stappert, S.; Watanabe, K.; Ochs, N. A. K.; Schaeublin, R.; Li, C.; Yashima, E.; Pisula, W.; Mullen, K.; Wennemers, H. Nat. Chem. 2017, 9, 1068.
[31] Liu, Y.; Yaghi, O. M. Bull. Jpn. Soc. Coord. Chem. 2018, 71, 12.
[32] Liu, Y.; Ma, Y.; Zhao, Y.; Sun, X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H.; Zhu, C.; Suenaga, K.; Oleynikov, P.; Alshammari, A. S.; Zhang, X.; Terasaki, O.; Yaghi, O. M. Science 2016, 351, 365.
[33] Liu, Y.; Ma, Y.; Yang, J.; Diercks, C. S.; Tamura, N.; Jin, F.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 16015.
[34] Xu, H.-S.; Luo, Y.; Li, X.; See, P. Z.; Chen, Z.; Ma, T.; Liang, L.; Leng, K.; Abdelwahab, I.; Wang, L.; Li, R. L.; Shi, X. Y.; Zhou, Y.; Lu, X. F.; Zhao, X. X.; Liu, C. B.; Sun, J. L.; Loh, K. P. Nat. Commun. 2020, 11, 1434.
[35] Xu, H.-S.; Luo, Y.; See, P. Z.; Li, X.; Chen, Z.; Zhou, Y.; Zhao, X.; Leng, K.; Park, I.-H.; Li, R.; Liu, C.; Chen, F.; Xi, S.; Sun, J.; Loh, K. P. Angew. Chem. Int. Ed. 2020, 59, 11527.
[36] Zhao, Y.; Guo, L.; Gándara, F.; Ma, Y.; Liu, Z.; Zhu, C.; Lyu, H.; Trickett, C. A.; Kapustin, E. A.; Terasaki, O.; Yaghi, O. M. J. Am. Chem. Soc. 2017, 139, 13166.
[37] (a) Tian, J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2016, 52, 6351. (b) Zhang, K.-D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.-H.; Zhou, T.-Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z.-T. J. Am. Chem. Soc. 2013, 135, 17913. (c) Xu, S.-Q.; Zhang, X.; Nie, C.-B.; Pang, Z.-F.; Xu, X.-N.; Zhao, X. Chem. Commun. 2015, 51, 16417. (d) Li, Y.; Dong, Y.; Miao, X.; Ren, Y.; Zhang, B.; Wang, P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L. Angew. Chem. Int. Ed. 2018, 57, 729. (e) Lee, H.-J.; Kim, H.-J.; Lee, E.-C.; Kim, J.; Park, S. Y. Chem.-Asian J. 2018, 13, 390.
[38] Tian, J.; Xu, Z.-Y.; Zhang, D.-W.; Wang, H.; Xie, S.-H.; Xu, D.-W.; Ren, Y.-H.; Wang, H.; Liu, Y.; Li, Z.-T. Nat. Commun. 2016, 7, 11580.
[39] Liu, Y.; Diercks, C. S.; Ma, Y.; Lyu, H.; Zhu, C.; Alshmimri, S. A.; Alshihri, S.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 677.
[40] Thorp-Greenwood, F. L.; Kulak, A. N.; Hardie, M. J. Nat. Chem. 2015, 7, 526.
[41] Lewis, J. E. M.; Beer, P. D.; Loeb, S. J.; Goldup, S. M. Chem. Soc. Rev. 2017, 46, 2577.
[42] Liu, Y.; O'Keeffe, M.; Treacy, M. M. J.; Yaghi, O. M. Chem. Soc. Rev. 2018, 47, 4642.
Outlines

/