Review

Water Adsorption Properties and Applications of Stable Metal-organic Frameworks

  • Zhang Jinwei ,
  • Li Ping ,
  • Zhang Xinning ,
  • Ma Xiaojie ,
  • Wang Bo
Expand
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081

Received date: 2020-05-09

  Online published: 2020-06-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21625102, 21801017, 21490570, 21674012), Beijing Municipal Science and Technology Project (No. Z181100004418001), and Beijing Institute of Technology Research Fund Program.

Abstract

Metal-organic frameworks (MOFs), featuring the ultrahigh surface area, high porosity, tunable geometrical and chemical properties, show potential applications in gas adsorption/separation, heterogenous catalysis, etc. As the ubiquity of water vapor in the ambient environment and industrial gas streams, it is necessary to study on interaction mechanism between MOFs and water molecules and develop highly water-stable MOFs with desirable water adsorption/desorption behaviors. It not only has the scientific significance, but also great importance in promoting the practical applications of MOFs. Given the tailorable abilities of pore size, pore volume, cavity hydrophilicity and water stability, MOFs provide unprecedented advantages to explore the well-defined porous sorbents in molecular level, which facilitates the realization of reversible water vapor uptake and release at expected relative pressure and temperature together with high working capacity. For now, a wide range of hydrolytically stable MOFs including high-valence metal (e.g. Cr3+, Al3+, Zr4+, Ti4+) based frameworks have emerged as the advanced and promising porous sorbents for energy efficient applications, by utilizing water as eco-friendly adsorbate media and renewable heat. This review focuses on the following aspects:(1) the degradation mechanism of MOFs in liquid phase of water and the design concepts of hydrolytically stable MOFs by modulating their coordination bond based on the Pearson' hard/soft acid/base principle; (2) the physical or chemical water ad/desorption properties of MOFs; (3) the classification of numerous MOFs sorbents and conventional desiccants based on their hydrophilicity, which is approximately reflected by the relative humidity (RH) value of the inflection points (the RH where the steep uptake starts) in isotherms; (4) a variety of water adsorption-based applications of MOFs such as industrial gas dehydration, drinking water harvesting in the desert area, adsorption-based heat pump and indoor humidity regulation. Finally, the research priorities and development outlook are summarized and the future challenge with respect to water adsorption-based applications for the next-generation MOFs are outlined.

Cite this article

Zhang Jinwei , Li Ping , Zhang Xinning , Ma Xiaojie , Wang Bo . Water Adsorption Properties and Applications of Stable Metal-organic Frameworks[J]. Acta Chimica Sinica, 2020 , 78(7) : 597 -612 . DOI: 10.6023/A20050153

References

[1] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
[2] Honicke, I. M.; Senkovska, I.; Bon, V.; Baburin, I. A.; Bonisch, N.; Raschke, S.; Evans, J. D.; Kaskel, S. Angew. Chem., Int. Ed. 2018, 57, 13780.
[3] Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
[4] Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43.
[5] Duan, J.; Pan, Y.; Liu, G.; Jin, W. Curr. Opin. Chem. Eng. 2018, 20, 122.
[6] Hou, J.; Zhang, H.; Simon, G. P.; Wang, H. Adv. Mater. 2019, e1902009.
[7] Li, L. B.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S. C.; Wu, H.; Li, J. P.; Zhou, W.; Chen, B. L. Science 2018, 362, 443.
[8] Lin, R. B.; Li, L.; Zhou, H. L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B. Nat. Mater. 2018, 17, 1128.
[9] Silva, P.; Vilela, S. M. F.; Tome, J. P. C.; Paz, F. A. A. Chem. Soc. Rev. 2015, 44, 6774.
[10] Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H. Chin. J. Chem. 2019, 37, 871.
[11] Zhang, X.; Lin, R. B.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. L. Adv. Mater. 2020, 32, 1907995.
[12] Xue, D. X.; Wang, Q.; Bai, J. F. Coord. Chem. Rev. 2019, 378, 2.
[13] Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783.
[14] Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Science 2017, 356, 731.
[15] Xiao, J. D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356.
[16] Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Angew. Chem., Int. Ed. 2016, 55, 5414.
[17] Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512.
[18] Li, D.; Kassymova, M.; Cai, X.; Zang, S.-Q.; Jiang, H.-L. Coord. Chem. Rev. 2020, 412, 213262.
[19] Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22(in Chinese). (郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
[20] Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
[21] Ding, M.; Shi, W. H.; Guo, L.; Leong, Z. Y.; Baji, A.; Yang, H. Y. J. Mater. Chem. A 2017, 5, 6113.
[22] Li, X.; Liu, Y. X.; Wang, J.; Gascon, J.; Li, J. S.; Van der Bruggen, B. Chem. Soc. Rev. 2017, 46, 7124.
[23] Wang, H.; Rassu, P.; Wang, X.; Li, H.; Wang, X.; Wang, X.; Feng, X.; Yin, A.; Li, P.; Jin, X.; Chen, S. L.; Ma, X.; Wang, B. Angew. Chem., Int. Ed. 2018, 57, 16416.
[24] Islamoglu, T.; Chen, Z.; Wasson, M. C.; Buru, C. T.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K. Chem. Rev. 2020. DOI:10.1021/acs.chemrev.9b00828.
[25] Kalaj, M.; Denny, M. S., Jr.; Bentz, K. C.; Palomba, J. M.; Cohen, S. M. Angew. Chem., Int. Ed. 2019, 58, 2336.
[26] Bian, L.; Li, W.; Wei, Z.; Liu, X.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese). (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
[27] Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758(in Chinese). (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
[28] Sun, Y.; Qi, Y.; Shen, Y.; Jing, C.; Chen, X.; Wang, X. Acta Chim. Sinica 2020, 78, 147(in Chinese). (孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.)
[29] Wang, C.; Liu, X.; Keser Demir, N.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107.
[30] Zhang, S. Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J. J. Am. Chem. Soc. 2018, 140, 12545.
[31] AbdulHalim, R. G.; Bhatt, P. M.; Belmabkhout, Y.; Shkurenko, A.; Adil, K.; Barbour, L. J.; Eddaoudi, M. J. Am. Chem. Soc. 2017, 139, 10715.
[32] Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369.
[33] Wang, S.; Lee, J. S.; Wahiduzzaman, M.; Park, J.; Muschi, M.; Martineau-Corcos, C.; Tissot, A.; Cho, K. H.; Marrot, J.; Shepard, W.; Maurin, G.; Chang, J. S.; Serre, C. Nat. Energy 2018, 3, 985.
[34] Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430.
[35] Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J.; Yaghi, O. M. Sci. Adv. 2018, 4, eaat3198.
[36] Hanikel, N.; Prevot, M. S.; Fathieh, F.; Kapustin, E. A.; Lyu, H.; Wang, H.; Diercks, N. J.; Glover, T. G.; Yaghi, O. M. ACS Cent Sci. 2019, 5, 1699.
[37] Xu, J.; Li, T.; Chao, J.; Wu, S.; Yan, T.; Li, W.; Cao, B.; Wang, R. Angew. Chem., Int. Ed. 2020, 59, 5202.
[38] Hanikel, N.; Prevot, M. S.; Yaghi, O. M. Nat. Nanotechnol. 2020, 15, 348.
[39] de Lange, M. F.; Verouden, K. J.; Vlugt, T. J.; Gascon, J.; Kapteijn, F. Chem. Rev. 2015, 115, 12205.
[40] Lenzen, D.; Bendix, P.; Reinsch, H.; Fröhlich, D.; Kummer, H.; Möllers, M.; Hügenell, P. P. C.; Gläser, R.; Henninger, S.; Stock, N. Adv. Mater. 2018, 30, 1705869.
[41] Cao, B. Y.; Tu, Y. D.; Wang, R. Z. iScience 2019, 15, 502.
[42] Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 1.
[43] Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Chem. Soc. Rev. 2016, 45, 2327.
[44] Lin, R.-B.; Xiang, S.; Li, B.; Cui, Y.; Qian, G.; Zhou, W.; Chen, B. Coord. Chem. Rev. 2019, 384, 21.
[45] Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.
[46] Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.
[47] Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 1995, 378, 703.
[48] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
[49] Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.
[50] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
[51] Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.
[52] Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Chem. Soc. Rev. 2014, 43, 5594.
[53] Wu, Y.; Lv, Z.; Zhou, X.; Peng, J.; Tang, Y.; Li, Z. Chem. Eng. J. 2019, 355, 815.
[54] Devic, T.; Serre, C. Chem. Soc. Rev. 2014, 43, 6097.
[55] Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. C. Adv. Mater. 2018, 30, e1704303.
[56] Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louer, D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519.
[57] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040.
[58] Hong, D.-Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J.-S. Adv. Funct. Mater. 2009, 19, 1537.
[59] Serre, C.; Mellot-Draznieks, C.; Surble, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Science 2007, 315, 1828.
[60] Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem. Eur. J. 2004, 10, 1373.
[61] Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Elkaim, E.; Vimont, A. Dalton Trans. 2009, 2241.
[62] Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N. Inorg. Chem. 2008, 47, 7568.
[63] Vimont, A.; Goupil, J. M.; Lavalley, J. C.; Daturi, M.; Surble, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N. J. Am. Chem. Soc. 2006, 128, 3218.
[64] Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G. r.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F. Chem. Mater. 2009, 21, 5695.
[65] Reinsch, H.; Stock, N. CrystEngComm 2013, 15, 544.
[66] Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Férey, G. Chem. Commun. 2007, 2820.
[67] Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Chem. Rev. 2012, 112, 1001.
[68] Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186.
[69] Jiang, X.; Li, S. W.; Bai, Y. P.; Shao, L. J. Mater. Chem. A 2019, 7, 10898.
[70] Xiong, Y.; Dong, J.; Huang, Z. Q.; Xin, P.; Chen, W.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z.; Ye, J.; Wei, X.; Cao, R.; Gu, L.; Sun, S.; Zhuang, L.; Chen, X.; Yang, H.; Chen, C.; Peng, Q.; Chang, C. R.; Wang, D.; Li, Y. Nat. Nanotechnol. 2020, 15, 390.
[71] Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Adv. Energy Mater. 2020, 10, 21.
[72] Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Nat. Commun. 2019, 10, 2177.
[73] Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.
[74] Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Adv. Mater. 2018, 30, e1704304.
[75] Burtch, N. C.; Jasuja, H.; Walton, K. S. Chem. Rev. 2014, 114, 10575.
[76] Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
[77] Ding, M.; Cai, X.; Jiang, H.-L. Chem. Sci. 2019, 10, 10209.
[78] Colombo, V.; Galli, S.; Choi, H. J.; Han, G. D.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Long, J. R. Chem. Sci. 2011, 2, 1311.
[79] Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, U.S., 2007.
[80] Yu, X. J.; Xian, Y. M.; Wang, C.; Mao, H. L.; Kind, M.; Abu-Husein, T.; Chen, Z.; Zhu, S. B.; Ren, B.; Terfort, A.; Zhuang, J. L. J. Am. Chem. Soc. 2019, 141, 18984.
[81] Lu, P.; Wu, Y.; Kang, H.; Wei, H.; Liu, H.; Fang, M. J. Mater. Chem. A 2014, 2, 16250.
[82] Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C. Chem. Mater. 2013, 25, 790.
[83] Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857.
[84] Yuan, S.; Liu, T. F.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, Y. P.; Bosch, M.; Zou, L.; Teat, S. J.; Dalgarno, S. J.; Zhou, H. C. Chem. Sci. 2015, 6, 3926.
[85] Bueken, B.; Vermoortele, F.; Vanpoucke, D. E. P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E. A.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. Angew. Chem., Int. Ed. 2015, 54, 13912.
[86] Nguyen, H. L.; Gandara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 4330.
[87] Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. ACS Catal. 2017, 7, 338.
[88] Gao, J.; Miao, J.; Li, P. Z.; Teng, W. Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. Chem. Commun. 2014, 50, 3786.
[89] Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Angew. Chem., Int. Ed. 2018, 57, 14852.
[90] Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
[91] Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643.
[92] Cao, J.; Yang, Z.-h.; Xiong, W.-p.; Zhou, Y.-y.; Peng, Y.-r.; Li, X.; Zhou, C.-y.; Xu, R.; Zhang, Y.-r. Chem. Eng. J. 2018, 353, 126.
[93] Du, X.-D.; Yi, X.-H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C.-C. Chem. Eng. J. 2019, 356, 393.
[94] Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K. Coord. Chem. Rev. 2017, 346, 101.
[95] Tanabe, K. K.; Cohen, S. M. Chem. Soc. Rev. 2011, 40, 498.
[96] Jasuja, H.; Burtch, N. C.; Huang, Y. G.; Cai, Y.; Walton, K. S. Langmuir 2013, 29, 633.
[97] Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R.; Zhou, H. C. J. Am. Chem. Soc. 2019, 141, 10283.
[98] Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082.
[99] Lian, X.; Feng, D.; Chen, Y. P.; Liu, T. F.; Wang, X.; Zhou, H. C. Chem. Sci. 2015, 6, 7044.
[100] Towsif Abtab, S. M.; Alezi, D.; Bhatt, P. M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Weseliński, Ł. J.; Alsadun, N.; Samin, U.; Hedhili, M. N.; Eddaoudi, M. Chem 2018, 4, 94.
[101] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051.
[102] Ng, E.-P.; Mintova, S. Microporous Mesoporous Mater. 2008, 114, 1.
[103] Canivet, J.; Bonnefoy, J.; Daniel, C.; Legrand, A.; Coasne, B.; Farrusseng, D. New J. Chem. 2014, 38, 3102.
[104] Hatch, C. D.; Wiese, J. S.; Crane, C. C.; Harris, K. J.; Kloss, H. G.; Baltrusaitis, J. Langmuir 2012, 28, 1790.
[105] Cadiau, A.; Lee, J. S.; Damasceno Borges, D.; Fabry, P.; Devic, T.; Wharmby, M. T.; Martineau, C.; Foucher, D.; Taulelle, F.; Jun, C. H.; Hwang, Y. K.; Stock, N.; De Lange, M. F.; Kapteijn, F.; Gascon, J.; Maurin, G.; Chang, J. S.; Serre, C. Adv. Mater. 2015, 27, 4775.
[106] Kummer, H.; Jeremias, F.; Warlo, A.; Füldner, G.; Fröhlich, D.; Janiak, C.; Gläser, R.; Henninger, S. K. Ind. Eng. Chem. Res. 2017, 56, 8393.
[107] Lenzen, D.; Zhao, J.; Ernst, S. J.; Wahiduzzaman, M.; Ken Inge, A.; Frohlich, D.; Xu, H.; Bart, H. J.; Janiak, C.; Henninger, S.; Maurin, G.; Zou, X.; Stock, N. Nat. Commun. 2019, 10, 3025.
[108] Li, H.; Feng, X.; Ma, D.; Zhang, M.; Zhang, Y.; Liu, Y.; Zhang, J.; Wang, B. ACS Appl. Mater. Interfaces 2018, 10, 3160.
[109] Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. ACS Cent. Sci. 2017, 3, 668.
[110] Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K. J. Am. Chem. Soc. 2019, 141, 2900.
[111] Leubner, S.; Zhao, H.; Van Velthoven, N.; Henrion, M.; Reinsch, H.; De Vos, D. E.; Kolb, U.; Stock, N. Angew. Chem., Int. Ed. 2019, 58, 10995.
[112] Zhang, J. P.; Zhu, A. X.; Lin, R. B.; Qi, X. L.; Chen, X. M. Adv. Mater. 2011, 23, 1268.
[113] Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mater. 2009, 120, 325.
[114] Reinsch, H.; Pillai, R. S.; Siegel, R.; Senker, J.; Lieb, A.; Maurin, G.; Stock, N. Dalton Trans. 2016, 45, 4179.
[115] Ma, D.; Li, P.; Duan, X.; Li, J.; Shao, P.; Lang, Z.; Bao, L.; Zhang, Y.; Lin, Z.; Wang, B. Angew. Chem., Int. Ed. 2019, 59, 1.
[116] Padial, N. M.; Quartapelle Procopio, E.; Montoro, C.; Lopez, E.; Enrique Oltra, J.; Colombo, V.; Maspero, A.; Masciocchi, N.; Galli, S.; Senkovska, I.; Kaskel, S.; Barea, E.; Navarro, J. A. R. Angew. Chem., Int. Ed. 2013, 52, 8290.
[117] Karimi, A.; Abdi, M. A. Chem. Eng. Process.-Process Intensification 2009, 48, 560.
[118] Elimelech, M.; Phillip, W. A. Science 2011, 333, 712.
[119] Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430.
[120] Sha, H.; Xu, P.; Yang, Z.; Chen, Y.; Tang, J. Renew. Sustain. Energy Rev. 2019, 108, 76.
[121] Wade, C. R.; Corrales-Sanchez, T.; Narayan, T. C.; Dincă, M. Energy Environ. Sci. 2013, 6, 2172.
[122] Shi, C.; Zhang, H.; Xuan, Y. Build. Environ. 2019, 160, 106175.
[123] De Rossi, A.; Carvalheiras, J.; Novais, R. M.; Ribeiro, M. J.; Labrincha, J. A.; Hotza, D.; Moreira, R. F. P. M. Constr. Build. Mater. 2018, 191, 39.
[124] Hall, M. R.; Tsang, S. C. E.; Casey, S. P.; Khan, M. A.; Yang, H. Acta Mater. 2012, 60, 89.
[125] Watson, T. Nature 2014, 513, S14.
[126] Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Environ. Health 2013, 12.
[127] Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Build. Environ. 2018, 146, 98.
[128] Arundel, A. V.; Sterling, E. M.; Biggin, J. H.; Sterling, T. D. Environ. Health Perspect. 1986, 65, 351.
[129] Shehadi, M. J. Build. Eng. 2018, 19, 539.
[130] Wright, A. M.; Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. Chem. Sci. 2018, 9, 3856.
[131] Zheng, J.; Vemuri, R. S.; Estevez, L.; Koech, P. K.; Varga, T.; Camaioni, D. M.; Blake, T. A.; McGrail, B. P.; Motkuri, R. K. J. Am. Chem. Soc. 2017, 139, 10601.
[132] Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Chem. Mater. 2012, 24, 3153.
[133] Liu, Z.; Li, W.; Liu, H.; Zhuang, X.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
Outlines

/