Review

Application of Anderson Type Heteropoly Acids as Catalysts in Organic Synthesis

  • Wei Zheyu ,
  • Chang Yalin ,
  • Yu Han ,
  • Han Sheng ,
  • Wei Yongge
Expand
  • a College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418;
    b Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2020-05-26

  Online published: 2020-06-30

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21971134, 21631007, 21225103).

Abstract

Anderson type heteropoly acids, also known as Anderson type polyoxometalates, are a kind of important structures in polyoxometalates. Their general structural formula can be expressed as [XM6O24]n, in which the core heteroatom X can almost be replaced by almost any metal or nonmetal element in the periodic table. Due to unique structure easy to be modified with organic ligands and designability, as well as their potential applications in materials, catalysis and medicines, Anderson type heteropoly acids have been widely concerned by researchers. In recent years, the application of Anderson type heteropoly acids in organic synthesis has gradually shown great significance for the study of green catalytic process. In this paper, the catalytic application of Anderson type heteropoly acids in organic synthesis has been reviewed and summarized according to the structure classification of Anderson type polyoxometalates. This will be helpful for the researchers to further study the catalytic application of Anderson heteropoly acids and provides new ideas for the research of green catalysis.

Cite this article

Wei Zheyu , Chang Yalin , Yu Han , Han Sheng , Wei Yongge . Application of Anderson Type Heteropoly Acids as Catalysts in Organic Synthesis[J]. Acta Chimica Sinica, 2020 , 78(8) : 725 -732 . DOI: 10.6023/A20050187

References

[1] Chen, W. L.; Wang, E. B. Polyoxometalate Chemistry, Science Press, Beijing, 2013, p. 38.
[2] Wang, N. J. Changchun Normal Univ. 2015, 34, 58.
[3] Wang, F. Ph.D. Dissertation, Northeast Normal University, Shenyang, 2007 (in Chinese). (王丰, 博士论文, 东北师范大学, 沈阳, 2007.)
[4] Qin, Z. X.; Li, Q.; Huang, Y. C.; Zhang, J. W.; Li, G.; Wei, Y. G. Chin. Sci. Bull. 2018, 63, 3263.
[5] Zhang, J. W.; Huang, Y. C.; Hao, J.; Wei, Y. G. Inorg. Chem. Front. 2017, 4, 1215.
[6] Wei, Z. Y.; Wei, Y. G. CN 104152980A, 2014 [Chem. Abstr. 2014, 9, 60].
[7] Hu, C. W.; Zhen, H.; Xu, L.; Wang, E. B. J. Mol. Sci. 1997, (1), 45 (in Chinese). (胡长文, 甄慧, 许林, 王恩波, 分子科学学报, 1997, (1), 45.)
[8] Wu, P. S.; Zhang, H. Y.; Xu, L; De, G. J. R. H.; Hu, C. W.; Wang, E. B. J. Northeast Normal Univ. (Nat. Sci.) 2001, 4, 51 (in Chinese). (巫平松, 张宏宇, 许林, 德格吉日呼, 胡长文, 王恩波, 东北师大学报(自然科学版), 2001, 4, 51.)
[9] Guo, S. R.; Kong, Y. M.; Peng, J.; Wang, E. B. Chem. Bull. 2007, 10, 748 (in Chinese). (郭树荣, 孔育梅, 彭军, 王恩波, 化学通报, 2007, 10, 748.)
[10] Wei, Y. G. New progress of Polyacid Imine Derivatives, Abstracts of the 6th annual academic meeting and member congress of China Crystal Society (functional molecular crystal branch), China Crystal Society, 2016, p. 28.
[11] Wei, Z. Y.; Li, Q.; Wei, Y. G. J. Mol. Sci. 2017, 33, 391 (in Chinese). (魏哲宇, 李琦, 魏永革, 分子科学学报, 2017, 33, 391.)
[12] Song, Y. F.;Wei, Y. G. Chin. Sci. Bull. 2018, 63, 3261 (in Chinese). (宋宇飞, 魏永革, 科学通报, 2018, 63, 3261.)
[13] Yu, F. L.; Liu, C. Y.; Xie, P. H.; Yuan, B.; Xie, C. X.; Yu, S. T. RSC Adv. 2015, 5, 85540.
[14] Lei, Y.; Li, Z.; Yuan, Z.; Wang, R.; Sunee, W.; Dong, Z. L. Sep. Purif. Technol. 2015, 151, 155.
[15] Li, P. C. M.S. Dissertation, Yantai University, Yantai, 2017 (in Chinese). (李鹏程, 硕士论文, 烟台大学, 烟台, 2017.)
[16] Yang, W.; Hou, Y. J.; An, H. Y. J. Mol. Sci. 2017, 33, 385 (in Chinese). (杨微, 侯玉姣, 安海艳, 分子科学学报, 2017, 33, 385.)
[17] Sun, L.; Su, T.; Li, P. Catal. Lett. 2019, 149, 7.
[18] Ji, H. B.; She, Y. B. Prog. Chem. Eng. 2007, 26, 605 (in Chinese). (纪红兵, 佘远斌, 化工进展, 2007, 26, 605.)
[19] Li, J. J.; Wu, F. Textbook of introduction to green chemistry, Wuhan University Press, WuHan, 2015, p. 8.
[20] He, Y. M.; Sun, Y. H.; Han, B. X. Chin. Sci. Bull. 2015, 16, 1421.
[21] Song, J. L.; Han, B. X. Natl. Sci. Rev. 2015, 3, 255.
[22] SD, K.; Gokavi, G. S. Res. J. Chem. 2016, 6, 17.
[23] Yu, H.; Zhai, Y. Y.; Dai, G. Y.; Ru, S.; Han, S.; Wei, Y. G. Chem.-Eur. J. 2017, 23, 13883.
[24] Yu, H.; Ru, S.; Zhai, Y. Y.; Dai, G. Y.; Han, S.; Wei, Y. G. ChemCatChem 2018, 10, 1253.
[25] Zhai, Y. Y.; Zhang, M. Q.; Fang, H. B.; Ru, S.; Yu, H.; Zhao, W. S.; Wei, Y. G. Org. Chem. Front. 2018, 5, 3454.
[26] Zhang, M. Q.; Zhai, Y. Y.; Ru, S.; Zang, D. J.; Han, S.; Yu, H.; Wei, Y. G. Chem. Commun. 2018, 54, 10164.
[27] Wang, J. J.; Zhai, Y. Y.; Wang, Y.; Yu, H.; Zhao, W. S.; Wei, Y. G. Dalton Trans. 2018, 47, 13323.
[28] Sawant, J. D.; Patil, K. K.; Gokavi, G. S. Transition Met. Chem. 2019, 44, 153.
[29] Wei, Z. Y.; Ru, S.; Zhao, Q. X.; Yu, H.; Zhang, G.; Wei, Y. G. Green Chem. 2019, 21, 4069.
[30] Zhou, Z. H.; Dai, G. Y.; Ru, S.; Yu, H.; Wei, Y. G. Dalton Trans. 2019, 48, 14201.
[31] Yu, H.; Wang, J. J.;Wu, Z. K.; Zhao, Q. X.; Dan, D. M.; Han, S.; Tang, J. J.; Wei, Y. G. Green Chem. 2019, 21, 4550.
[32] Yu, H.; Wu, Z. K.; Wei, Z. Y.; Zhai, Y. Y.; Ru, S.; Zhao, Q. X.; Wang, J. J.; Han, S.; Wei, Y. G. Commun. Chem. 2019, 2, 1.
[33] Wu, Z. K.; Zhai, Y. Y.; Zhao, W. S.; Wei, Z. Y.; Yu, H.; Han, S.; Wei, Y. G. Green Chem. 2020, 22, 737.
[34] Xu, J. J.; Zhu, Z. G.; Yuan, Z. L.; Su, T.; Zhao, Y. C.; Ren, W. Z.; Zhang, Z. H.; Lu, H. Y. J. Taiwan Inst. Chem. E. 2019, 104, 8.
[35] Wang, J. J.; Yu, H.; Wei, Z. Y.; Qi, L.; Xuan, W. M.; Wei, Y. G. Research, 2020, 1, 3875920.
[36] Luo, J. H.; Huang, Y. C.; Ding, B.; Wang, P. M.; Geng, X. F.; Zhang, J. W.; Wei, Y. G. Catalysts 2018, 8, 121.
[37] Yu, H.; Ru, S.; Dai, G. Y.; Zhai, Y. Y.; Lin, H. L.; Han, S.; Wei, Y. G. Angew. Chem. Int. Ed. 2017, 56, 3867.
[38] She, S.; Mu, L.; Li, Q.; Huang, Z. H.; Wei, Y. G.; Yin, P. C. ChemPlusChem 2019, 11, 84.
Outlines

/