Review

A Brief Summary of Research Progress on the Application of Rare Earth Materials in Heterogeneous Catalysis

  • Guo Jinqiu ,
  • Du Yaping ,
  • Zhang Hongbo
Expand
  • a School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350;
    b Tianjin Key Laboratory of Rare Earth Materials and Application, Nankai University, Tianjin 300350

Received date: 2020-03-04

  Online published: 2020-07-06

Supported by

Project supported by the “111 Project” of China (No. B18030), Nankai University (No. 023-92022018), Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology (No. KLIEEE-19-07) and Natural Science Foundation of Tianjin (No. BE122121).

Abstract

Rare earth (RE) resources are in big amount in China, which can be effectively purified based on the strategies developed by Prof. Guangxian Xu et al. last century, which sets up solid fundamentals for applied research on rare earth materials nowadays. Rare earth elements, including scandium, yttrium and lanthanides, feature stable overall chemical properties, variable valence states and coordination form as well as special Lewis acidity due to the unique electron configuration in the outermost and secondary outer orbitals of the lanthanide elements ([Xe] 4fn-15d0~16s2 (n=1~15)), especially on their 4f electron shell structure, having been extensively used in catalysis. However, the efficiency and selectivity to the desired products are always the major challenges due to the complexity of catalysis, in particular, the mechanism by which rare earth metals affect catalytic reactions through structural or electronic effects has not been clarified. Therefore, this mini-review summarizes the research progress on the application of rare earth materials in heterogeneous catalysis (specifically on thermal catalysis). Firstly, a brief summary of rare earth materials' structural properties is provided with emphasis on the unique distribution of the 4f electron. Afterward, the application of RE elements in thermal catalysis was discussed in detail. For example:(1) as a support to promote catalytic reaction, such as CeO2, which has variable chemical valence and can be used as an active support to participate in the redox reaction; (2) as moderate Lewis acid (base) center to catalyze the aldol condensation of acetaldehyde/ethanol mixture and effectively control the C-C bond coupling; (3) as electronic and structural promoters to improve catalytic activity and stability. Hence, the structure-function relationship is illustrated in accordance with the studies of the rare earth materials as the supports, Lewis acid (base) active center and catalytic promoters, suggesting great potential of rare earth materials in catalysis.

Cite this article

Guo Jinqiu , Du Yaping , Zhang Hongbo . A Brief Summary of Research Progress on the Application of Rare Earth Materials in Heterogeneous Catalysis[J]. Acta Chimica Sinica, 2020 , 78(7) : 625 -633 . DOI: 10.6023/A20030053

References

[1] Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Chem. Rev. 2015, 115, 10726.
[2] Information Office of the State Council of the People's Republic of China. China Metal Bulletin 2012, 24, 20(in Chinese). (中华人民共和国国务院新闻办公室, 中国金属通报, 2012, 24, 20.)
[3] Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Li, M. L.; Zhou, Y. J.; Zhang, L. X.; Li, Y. S.; Shi, J. L. ACS Catal. 2019, 9, 4573.
[4] Liang, M. F.; Borjigin, T.; Zhang, Y. H.; Liu, B. H.; Liu, H.; Guo, H. Appl. Catal. B: Environ. 2018, 243, 566.
[5] Zhang, F.; Braun, G. B.; Shi, Y. F.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. J. Am. Chem. Soc. 2010, 132, 2850.
[6] Meng, S. Y.; Wang, M. M.; Lü, B. L.; Xue, Q. J.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 1184(in Chinese). (孟双艳, 王明明, 吕柏霖, 薛群基, 杨志旺, 化学学报, 2018, 77, 1184.)
[7] Xia, J. L.; Zhao, H. Y.; Pang, W. K.; Yin, Z. Y; Zhou, B.; He, G.; Guo, Z. P.; Du, Y. P. Chem. Sci. 2018, 9, 3421.
[8] Ha, H. W.; Yun, N. J.; Kim, M. H.; Woo, M. H.; Kim, K. Electrochim. Acta 2006, 51, 3297.
[9] Chen, P. L.; Chen, I. W. J. Am. Ceram. Soc. 1993, 76, 1577.
[10] Frey, A. M.; Karmee, S. K.; de Jong, K. P.; Bitter, J. H.; Hanefeld, U. ChemCatChem 2013, 5, 594.
[11] Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
[12] Song, T. Y.; Xu, J. N.; Cheng, G. Z.; Wang, L. Inorganic Chemistry (Third edition), Higher Education Press, Beijing, 2014, p. 816(in Chinese). (宋天佑, 徐佳宁, 程功臻, 王莉, 无机化学(第三版), 高等教育出版社, 北京, 2014, p. 816.)
[13] Risse, T.; Shaikhutdinov, S.; Nilius, N.; Sterrer, M.; Freund, H. J. Acc. Chem. Res. 2008, 41, 949.
[14] Mattos, L. V.; Noronha, F. B. J. Catal. 2005, 233, 453.
[15] Summers, J. C.; Ausen, S. A. J. Catal. 1979, 58, 131.
[16] Yao, H. C.; Yao, Y. F. J. Catal. 1984, 86, 254.
[17] Shyu, J. Z.; Otto, K.; Watkins, W. L. H.; Graham, G. W.; Belitz, R. K. J. Catal. 1988, 114, 23.
[18] Kašpar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50, 285.
[19] Fornasiero, P.; Monte, R. D.; Rao, G. R.; Kašpar, J.; Meriani, S.; Trovarelli, A.; Graziani, M. J. Catal. 1995, 151, 168.
[20] Valsamakis, I.; Flytzani-Stephanopoulos, M. Appl. Catal. B: Environ. 2011, 106, 255.
[21] Al-Sultan, F. S.; Basahel, S. N.; Narasimharao, K. Fuel 2018, 233, 796.
[22] Zheng, T. T.; He, J. J.; Zhao, Y. K.; Xia, W. Z.; He, J. L. J. Rare Earth 2014, 32, 97.
[23] Korneeva, E. V.; Ivanova, A. S.; Bukhtiyarova, G. A.; Aleksandrov, P. V.; Zaikovskii, V. I.; Prosvirin, I. P.; Noskov, A. S. Kinet. Catal. 2011, 52, 579.
[24] Mokhnachuk, O. V.; Soloviev, S. O.; Kapran, A. Y. Catal. Today 2007, 119, 145.
[25] Lemonidou, A. A.; Vagia, E. C.; Lercher, J. A. ACS Catal. 2013, 3, 1919.
[26] Li, X. Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z. J.; Gong, J. L. Appl. Catal. B: Environ. 2017, 202, 683.
[27] Sodesawa, T.; Dobashi, A.; Nozaki, F. Kinet. Catal. Lett. 1979, 12, 107.
[28] Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. J. Catal. 2000, 194, 198.
[29] Singh, S.; Zubenko, D.; Rosen, B. A. ACS Catal. 2016, 6, 4199.
[30] Pawar, V.; Appari, S.; Monder, D. S.; Janardhanan, V. M. Ind. Eng. Chem. Res. 2017, 56, 8448.
[31] Dahdah, E.; Rached, J. A.; Aouad, S.; Gennequin, C.; Tidahy, H. L.; Estephane, J.; Aboukais, A.; Aad, E. A. Int. J. Hydrogen Energy 2017, 48, 12808.
[32] Liu, H. R.; Wierzbicki, D.; Debek, R.; Motak, M.; Grzybek, T.; Costa, P. D.; Gálvez, M. E. Fuel 2016, 182, 8.
[33] Tsipouriari, V. A.; Verykios, X. E. J. Catal. 1999, 187, 85.
[34] Oemar, U.; Kathiraser, Y.; Mo, L.; Ho, X. K.; Kawi, S. Catal. Sci. Technol. 2016, 6, 1173.
[35] Li, K.; He, F.; Yu, H. M.; Wang, Y.; Wu, Z. J. J. Catal. 2018, 364, 248.
[36] May, Y. A.; Wang, W. W.; Yan, H.; Wei, S.; Jia, C. J. Chin. J. Catal. 2020, 41, 1017.
[37] Zhou, Y.; Chen, A.; Ning, J.; Shen, W. J. Chin. J. Catal. 2020, 41, 928.
[38] Si, R.; Flytzani-Stephanopoulos, M. Angew. Chem., Int. Ed. 2008, 47, 2884.
[39] Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Catal. Lett. 2001, 77, 87.
[40] Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman, I. P. Appl. Phys. Lett. 2002, 80, 127.
[41] Gatla, S.; Aubert, D.; Agostini, G.; Mathon, O.; Pascarelli, S.; Lunkenbein, T.; Willinger, M. G.; Kaper, H. ACS Catal. 2016, 6, 6151.
[42] Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L.; Datye, A. K.; Wang, Y. Science 2017, 358, 1419.
[43] Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y. Q.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K.; Hensen, E. J. M. Appl. Catal. B: Environ. 2019, 243, 36.
[44] Liu, L. C.; Corma, A. Chem. Rev. 2018, 118, 4981.
[45] Zhao, S.; Chen, F.; Duan, S. B.; Shao, B.; Li, T. B.; Tang, H. L.; Lin, Q. Q.; Zhang, J. Y.; Li, L.; Huang, J. H.; Bion, N.; Liu, W.; Sun, H.; Wang, A. Q.; Haruta, M.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Nat. Commun. 2019, 10, 3824.
[46] Liu, J. C.; Wang, Y. G.; Li, J. J. Am. Chem. Soc. 2017, 139, 6190.
[47] Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernandez, X. I. P.; Wang, Y.; Datye, A. K. Science 2016, 353, 150.
[48] Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935.
[49] Dongil, A. B.; Pastor-Perez, L.; Escalona, N.; Sepulveda-Escribano, A. Carbon 2016, 101, 296.
[50] Reina, T. R.; Ivanova, S.; Centeno, M. A.; Odriozola, J. A. Appl. Catal. B: Environ. 2016, 187, 98.
[51] Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Senanayake, S. D.; White, M. G.; Chen, J. G. ACS Catal. 2015, 6, 6696.
[52] Micoud, F.; Maillard, F.; Bonnefont, A.; Job, N.; Chatenet, M. Phys. Chem. Chem. Phys. 2010, 12, 1182.
[53] Li, S. W.; Xu, Y.; Chen, Y. F.; Li, W. Z.; Lin, L. L.; Li, M. Z.; Deng, Y. C.; Wang, X. P.; Ge, B. H.; Yang, C.; Yao, S. Y.; Xie, J. L.; Li, Y. W.; Liu, X.; Ma, D. Angew. Chem., Int. Ed. 2017, 56, 10761.
[54] Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. ACS Catal. 2018, 8, 6203.
[55] Xu, J.; Chen, X. Y.; Xu, Y. S.; Du, Y. P.; Yan, C. H. Adv. Mater. 2019, 1806461.
[56] Pudukudy, M.; Yaakob, Z.; Takriff, M. S. Energy Convers. Manage. 2016, 126, 302.
[57] Pudukudy, M.; Yaakob, Z.; Jia, Q. M.; Takriff, M. S. Appl. Surf. Sci. 2019, 467~468, 236.
[58] Lessard, J. D.; Valsamakis, I.; Flytzani-Stephanopoulos, M. Chem. Commun. 2012, 48, 4857.
[59] Akhmedov, V. M.; Al-Khowaiter, S. H. Catal. Rev.-Sci. Eng. 2007, 44, 455.
[60] Jacinto, S.; Ace, M.; Delgado, J. J.; Goguet, A.; Hardacre, C.; Morgan, K. ChemCatChem 2011, 3, 394.
[61] Wang, Z. Q.; Wang, D.; Gong, X. Q. ACS Catal. 2020, 10, 586.
[62] Huang, Z. Q.; Zhang, T. Y.; Chang, C. R.; Li, J. ACS Catal. 2019, 9, 5523.
[63] Sun, J. M.; Zhu, K. K.; Gao, F.; Wang, C. M.; Liu, J.; Peden, C. H. F.; Wang, Y. J. Am. Chem. Soc. 2011, 133, 11096.
[64] Ogo, S.; Onda, A.; Iwasa, Y.; Hara, K.; Fukuoka, A.; Yanagisawa, K. J. Catal. 2012, 296, 24.
[65] Zhang, H. B.; Ibrahim, M. Y. S.; Flaherty, D. W. J. Catal. 2018, 361, 290.
[66] Pang, J. F.; Zheng, M. Y.; He, L.; Li, L.; Pan, X. L.; Wang, A. Q.; Wang, X. D.; Zhang, T. J. Catal. 2016, 344, 184.
[67] Moteki, T.; Flaherty, D. W. ACS Catal. 2016, 6, 4170.
[68] Dai, J. J.; Zhang, H. B. Sci. China Mater. 2019, 62, 1642.
[69] Cota, I.; Ramírez, E.; Medina, F.; Layrac, C.; Tichit, D.; Gérardin, C. J. Mol. Catal. A: Chem. 2016, 412, 101.
[70] Yan, T. T.; Dai, W. L.; Wu, G. J.; Lang, S.; Hunger, M.; Guan, N. J.; Li, L. D. ACS Catal. 2018, 8, 2760.
[71] Wang, Z.; Fongarland, P.; Lu, G. Z.; Essayem, N. J. Catal. 2014, 318, 108.
[72] Meis, N. N. A. H.; Bitter, J. H.; de Jong, K. P. Ind. Eng. Chem. Res. 2010, 49, 1229.
[73] Álvarez, M. G.; Plísková, M.; Segarra, A. M.; Medina, F.; Figueras, F. Appl. Catal. B: Environ. 2012, 113~114, 212.
[74] Liang, Z.; Jiang, D. H.; Fang, G. Q.; Leng, W. H.; Tu, P. X.; Tong, Y. Q.; Liu, L.; Ni, J.; Li, X. N. ChemistrySelect 2019, 4, 4364.
[75] Zhen, K. J.; Li, R. S.; Wang, G. J.; Bi, Y. L.; Kan, Q. B. Catalysis Basics (Third edition), Science Press, Beijing, 2004, p. 239. (in Chinese). (甄开吉, 李荣生, 王国甲, 毕颖丽, 阚秋斌, 催化作用基础(第三版), 科学出版社, 北京, 2004, p. 239)
[76] Cunha, A. F.; Mahata, N.; Órfão, J. J. M.; Figueiredo, J. L. Energy Fuels 2009, 23, 4047.
[77] Gao, J.; Hou, Z. Y.; Guo, J. Z.; Zhu, Y. H.; Zheng, X. M. Catal. Today 2008, 131, 278.
Outlines

/