Article

Synthesis of Two-dimensional Hydrophobic Copper-based Nanosheets and Their Application in Catalytic Oxidation of Sulfides

  • Yang Zhongjie ,
  • Zhang Xiaofei ,
  • Shi Yanan ,
  • Long Chang ,
  • Zhang Binhao ,
  • Yan Shuhao ,
  • Chang Lin ,
  • Tang Zhiyong
Expand
  • a CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
    b School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
    c School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China;
    d Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-05-12

  Online published: 2020-07-10

Supported by

Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), National Key Basic Research Program of China (No. 2016YFA0200700), National Natural Science Foundation of China (Nos. 21890381, 21721002), Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038), and K.C.Wong Education Foundation.

Abstract

Two-dimensional nanomaterials have received extensive attention because of their unique physicochemical properties. However, bottom-up synthesis of two-dimensional (2D) stable nanomaterials still remains great challenge. In this work, a novel 2D metal-organic (Cu-BDT) nanosheet is constructed at room temperature by coordinative self-assembly, namely, using monovalent copper ion as the metal precursor and 1,4-benzenedithiol as organic ligand. As-synthesized Cu-BDT nanosheets are fully characterized by various techniques including powder-diffraction of X-rays (P-XRD), Fourier transform infrared spectrometer (FT-IR), Raman spectra (Raman), scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometer (ICP-OES) and contact angle test. The catalytic result verifies that the Cu-BDT nanosheet surfaces possess abundant active sites and good hydrophobicity, which facilitate oxidation of sulfides into sulfoxide compounds.

Cite this article

Yang Zhongjie , Zhang Xiaofei , Shi Yanan , Long Chang , Zhang Binhao , Yan Shuhao , Chang Lin , Tang Zhiyong . Synthesis of Two-dimensional Hydrophobic Copper-based Nanosheets and Their Application in Catalytic Oxidation of Sulfides[J]. Acta Chimica Sinica, 2020 , 78(9) : 980 -988 . DOI: 10.6023/A20050165

References

[1] Cao, F.-F.; Zhao, M.-T.; Yu, Y.-F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X.-H.; Lu, Q.-P.; Zhang, X.; Zhang, Z.-C.; Tan, C.-L.; Zhang, H. J. Am. Chem. Soc. 2016, 138, 6924.
[2] El-Kady, M. F.; Veronica, S.; Sergey, D.; Richard, B. K. Science 2012, 335, 1326.
[3] Wu, C.-Z.; Lu, X.-L.; Peng, L.-L.; Xu, K.; Peng, X.; Huang, J.-L.; Yu, G.-H.; Xie, Y. Nat. Comm. 2013, 4, 3431.
[4] Yang, X.-W.; Cheng, C.; Wang, Y.-F.; Qiu, L.; Li, D. Science 2013, 341, 6145.
[5] Huang, W.; Li, Y.-G. Chinese J. Chem. 2019, 37, 12.
[6] Wang, H.-T.; Yuan, H.-T.; Seung, S. H.; Li, Y.-B.; Cui, Y. Chem. Soc. Rev. 2015, 44, 2664.
[7] Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.-F.; Tian, Z.-Q.; Bao, X.-H. Nat. Nanotech. 2016, 11, 218.
[8] Song, F.; Hu, X.-L. J. Am. Chem. Soc. 2018, 136, 16481.
[9] Song, F.; Hu, X.-L. Nat. Comm. 2014, 5, 5447.
[10] Zheng, Y.; Yan, J.; Lei, G.; Mietek, J.; Qiao, S.-Z. Angew. Chem., Int. Ed. 2013, 125, 3192.
[11] Yu, J.; Yang, Y.-S.; Wei, M. Acta Chim. Sinica 2019, 77, 1129(in Chinese). (余俊, 杨宇森, 卫敏, 化学学报, 2019, 77, 1129.)
[12] Jiao, C.-L.; Wang, W.; Liu, J.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2018, 76, 526(in Chinese). (焦岑蕾, 王炜, 刘娇, 袁亚仙, 徐敏敏, 姚建林, 化学学报, 2018, 76, 526.)
[13] Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2014, 48, 128.
[14] Niu, L.-Y.; Coleman, J. N.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z.-J. Small 2016, 12, 272.
[15] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
[16] Sakamoto, J.; Jeroen, v-H.; Lukin, O.; Schlüter, A.-D. Angew. Chem., Int. Ed. 2009, 48, 1030.
[17] Huang, X.; Zeng, Z.-Y.; Zhang, H. Chem. Soc. Rev. 2013, 42, 1934.
[18] Chu, W.-Y.; Tang, X.; Li, Z.; Lin, J.-C.; Qian, J.-S. Acta Chim. Sinica 2018, 76, 549(in Chinese). (楚婉怡, 唐笑, 李振, 林景诚, 钱觉时, 化学学报, 2018, 76, 549.)
[19] Sakamoto, R.; Takada, K.; Pal, T.; Maeda, H.; Kambecd, T.; Nishiharaa, H. Chem. Coummn. 2017, 53, 5781.
[20] Dong, R.-H.; Pfeffermann, M.; Liang, H.-W.; Zheng, Z.-K.; Zhu, X.; Zhang, J.; Feng, X.-L. Angew. Chem., Int. Ed. 2015, 54, 12058.
[21] Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasak, S.; Kim, J.; Nakazato.; Takat, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462.
[22] Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. J. Am. Chem. Soc. 2014, 137, 118.
[23] Maeda, H.; Sakamoto, R.; Nishihara, H. Langmuir 2016, 32, 2527.
[24] Sugimori, A.; Akiyama, T.; Kajitani, M.; Sugiyama, T. B. Chem. Soc. Jpn. 1999, 72, 879.
[25] Dong, R.-H.; Pfeffermann, M.; Liang, H.-W.; Zheng, Z.-K; Zhu, X.; Zhang, J.; Feng, X.-L. Angew. Chem., Int. -Ed. 2015, 54, 12058.
[26] Huang, X.; Sheng, P.; Tu, Z.-Y.; Zhang, F.-J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C.-A.; Yi, Y.-P.; Sun, Y.-M.; Xu, W.; Zhu, D.-B. Nat. Comm. 2015, 6, 7408.
[27] Huang, X.; Li, H.-S.; Tu, Z.-Y.; Liu, L.-Y.; Wu, X.-Y.; Chen, J.; Liang, Y.-Y.; Zou, Y.; Yi, Y.-P.; Zhu, D.-B. J. Am. Chem. Soc. 2018, 140, 15153.
[28] Takada, K.; Sakamoto, R.; Yi, S.-T.; Katagiri, S.; Kambe, T.; Nishihara, H. J. Am. Chem. Soc. 2015, 137, 4681.
[29] Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 7438.
[30] Bauer, T.; Zheng, Z.-K.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. J. Am. Chem. Soc. 2011, 123, 8025.
[31] Yang, R.-T.; Maldonado, A. J.; Yang, F.-H. Science 2003, 301, 79.
[32] Li, T.-F.; Zhang, W.; Chen, W.; Miras, H. N.; Song, Y.-F. ChemCatChem 2017, 10, 188.
[33] Doherty, S.; Knight, J. G.; Carroll, M. A.; Ellison, J. R.; Hobson, S. J.; Stevens, S.; Hardacre, C.; Goodrichb, P. Green Chem. 2015, 17, 1559.
[34] Nisar, A.; Zhuang, J.; Wang, X. Adv. Mater. 2011, 23, 1130.
[35] Nisar, A.; Lu, Y.; Zhuang, J.; Wang, X. Angew. Chem., Int. Ed. 2011, 123, 3245.
[36] Schrauzer, G.; Prakash, H. Inorg. Chem. 1975, 14, 1200.
[37] Hu, C.; Hu, C.-Y.; Ma, Q.-Y.; Hung, S.-F.; Chen, Z.-N.; Ou, D.-H.; Ren, B.; Chen, C.-M.; Fu, G.; Zheng, N.-F. Chem 2017, 3, 122.
[38] Gaarenstroom, S.; Winograd, N. J. Chem. Phys. 1977, 67, 3500.
[39] Rupp, H.; Weser, U. BBA-Protein Structure 1976, 446, 151.
[40] Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surf. Interface. Anal. 1996, 24, 811.
[41] Zhang, Z.; Long, J.-L.; Yang, L.-F.; Chen, W.-K. Chem. Sci. 2011, 2, 1826.
[42] Sandhyarani, N.; Pradeep, T. J. Mater. Chem. 2001, 11, 1294.
[43] Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H.-T. Science 2019, 366, 226.
[44] Guo, X.-K.; Xu, M.-X.; She, M.-Y.; Zhu, Y.; Shi, T.-T.; Chen, Z.-X.; Peng, L.-M.; Guo, X.-F.; Lin, M.; Ding, W.-P. Angew. Chem., Int. Ed. 2020, 59, 2606.
[45] Tan, B.; Wu, W.-H.; Liu, X.; Zhang, Y.-B.; Quan, X.; Zhao, H.-M. Nanoscale 2017, 9, 18699.
[46] Xiao, F.-S.; Sun, J.-M.; Meng, X.-J.; Yu, R.-B.; Yuan, H.-M.; Xu, J.-N.; Song, T.-Y.; Jiang, D.-Z.; Xu, R.-R. J. Catal. 2001, 199, 273.
Outlines

/