Communication

From Hydroxylamines to Anilines via Trifluoroacetic Anhydride (TFAA) Assisted Stieglitz Rearrangement

  • Luo Xiao ,
  • Jiao Ning
Expand
  • State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191

Received date: 2020-05-28

  Online published: 2020-07-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21632001 and 21772002).

Abstract

Hydroxylamines have a wide range of biological properties and have been used as a useful synthon in organic synthesis. In the past decades, many transformations of hydroxylamines have been developed and widely applied. In contrast, one of the interesting reactions of hydroxylamines through C—C bond cleavage, named Stieglitz rearrangement, was less developed. Due to the poor leaving ability of the hydroxyl groups, the reported Stieglitz rearrangement reactions suffered from the harsh conditions and the very limited substrate scope with triarylmethyl hydroxylamine substrates. Since an interesting C—C bond cleavage is involved which will extend the synthetic application of hydroxylamine, the practical method under mild conditions with broad substrate scope for Stieglitz rearrangement is very desired. However, there are three potential problems which need to be addressed. First, the activator must selectively react with the hydroxyl group but not the N-nucleophile of the hydroxylamine substrates. Secondary, a suitable leaving group must be generated to weaken the N—O bond. In addition, the employed activator must be inactive to the formed imine intermediates and the subsequent amine products. Herein, we developed an efficient Stieglitz rearrangement reaction of hydroxylamines under mild conditions for the preparation of corresponding primary aryl amines. This chemistry using simple trifluoroacetic anhydride (TFAA) as an activator resolves the issues mentioned above and therefore provides a practical protocol for the further transformation and application of hydroxylamines. Mechanistic studies demonstrate that the in situ generation of an active trifluoroacetate leaving group derived the aryl migration process via both of the C—C and N—O bond cleavage. A general procedure for the TFAA assisted stieglitz rearrangement is as follows: BF3·Et2O (28.4 mg, 0.2 mmol), TFAA (46.2 mg, 0.22 mmol) were added to the solution of hydroxylamine (0.2 mmol) in 2 mL hexafluoroisopropanol (HFIP). The reaction mixture was stirred at room temperature for 1 h. After that, the reaction was quenched by 4 mL 2 mol/L NaOH (aq.) and extracted by the mixture of petroleum ether and ethyl acetate (1∶1, VV). The combined organic phase was concentrated, and purified by flash chromatography on a short silica gel to afford the desired product (eluent: petroleum ether/ethyl acetate).

Cite this article

Luo Xiao , Jiao Ning . From Hydroxylamines to Anilines via Trifluoroacetic Anhydride (TFAA) Assisted Stieglitz Rearrangement[J]. Acta Chimica Sinica, 2020 , 78(8) : 758 -762 . DOI: 10.6023/A20050191

References

[1] (a) Piechnick, R.; Heck, M.; Sommer, M. E. Biochemistry 2011, 50, 7168; (b) Chen, Y.; Wang, X.; Xiang, W.; He, L.; Tang, M.; Wang, F.; Wang, T.; Yang, Z.; Yi, Y.; Wang, H.; Niu, T.; Zheng, L.; Lei, L.; Li, X.; Song, H.; Chen, L. J. Med. Chem. 2016, 59, 5488.
[2] (a) Rappoport, Z.; Liebman, J. F., The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Vol. 1, John Wiley & Sons, 2008; (b) Zhang, Y.; Wang, M.; Cao, P.; Liao, J. Acta Chim. Sinica 2017, 75, 794 (in Chinese). (张涌灵, 王敏, 曹鹏, 廖建, 化学学报, 2017, 75, 794); (c) He, Y.; Teng, J.; Tian, C.; Borzov, M.; Hu, Q.; Nie, W. Acta Chim. Sinica 2018, 76, 774 (in Chinese). (何云清, 滕金伟, 田冲, Borzov Maxim, 胡启山, 聂万丽, 化学学报, 2018, 76, 774).
[3] For some examples in recent years: (a) Nguyen, T. B.; Martel, A.; Dhal, R.; Dujardin, G. Org. Lett. 2008, 10, 4493; (b) Guimond, N.; MacDonald, M. J.; Lemieux, V.; Beauchemin, A. M. J. Am. Chem. Soc. 2012, 134, 16571; (c) Pusterla, I.; Bode, J. W. Angew. Chem. Int. Ed. 2012, 51, 513; (d) Li, J.; He, Y.; Ren, X.; Shi, X.; Yang, S.; Gao, X.; Huang, G. Chin. J. Chem. 2013, 31, 1003; (e) Hesp, C. R.; MacDonald, M. J.; Zahedi, M. M.; Bilodeau, D. A.; Zhao, S. B.; Pesant, M.; Beauchemin, A. M. Org. Lett. 2015, 17, 5136; (f) Sun, H. B.; Gong, L.; Tian, Y. B.; Wu, J. G.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Angew. Chem. Int. Ed. 2018, 57, 9456.
[4] (a) Stieglitz, J.; Leech, P. N. Ber. 1913, 46, 2147; (b) Stieglitz, J.; Leech, P. N. J. Am. Chem. Soc. 1914, 36, 272. (c) Morgan, A. F. J. Am. Chem. Soc. 1916, 38, 2095; (d) Newman, M. S.; Hay, P. M. J. Am. Chem. Soc. 1953, 75, 2322; (e) Stolyarov, B. V.; Krylov, A. I.; Ioffe, B. V. Zh. Org. Khim. 1977, 13, 2004.
[5] For some selected examples in recent years: (a) Qin, C.; Zhou, W.; Chen, F.; Ou, Y.; Jiao, N. Angew. Chem. Int. Ed. 2011, 50, 12595; (b) Qin, C.; Shen, T.; Tang, C.; Jiao, N. Angew. Chem. Int. Ed. 2012, 51, 6971; (c) Qin, C.; Feng, P.; Ou, Y.; Shen, T.; Wang, T.; Jiao, N. Angew. Chem. Int. Ed. 2013, 52, 7850; (d) Liang, Y.; Liang, Y.-F.; Jiao, N. Org. Chem. Front. 2015, 2, 403; (e) Song, S.; Feng, P.; Zou, M.; Jiao, N. Chin. J. Chem. 2017, 35, 845; (f) Shen, T.; Zhu, B.; Lin, F.; Pan, J.; Wei, J.; Luo, X.; Liu, J.; Jiao, N. Chin. J. Chem. 2018, 36, 815; (g) Liu, J.; Qiu, X.; Huang, X.; Luo, X.; Zhang, C.; Wei, J.; Pan, J.; Liang, Y.; Zhu, Y.; Qin, Q.; Song, S.; Jiao, N. Nat. Chem. 2019, 11, 71; (h) Lin, F.; Liang, Y.; Li, X.; Song, S.; Jiao, N. Acta Chim. Sinica 2019, 77, 906 (in Chinese). (林凤闺蓉, 梁宇杰, 郦鑫耀, 宋颂, 焦宁, 化学学报, 2019, 77, 906). For some reviews, see: (i) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615; (j)Yu, X. Y.; Chen, J. R.; Xiao, W. J. Chem. Rev. 2020, DOI: 10.1021/acs.chemrev.0c00030.
[6] For some reviews, see: (a) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem. - Eur. J. 2018, 24, 12154; (b) Xiao, L.; Li, J.; Wang, T. Acta Chim. Sinica 2019, 77, 841 (in Chinese). (肖丽, 李嘉恒, 王挺, 化学学报. 2019, 77, 841). For recent examples, see: (c) Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607; (d) Qin, Q.; Yu, S. Org. Lett. 2014, 16, 3504;
(e) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044; (f) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069; (g) Svejstrup, T. D.; Ruffoni, A.; Julia, F.; Aubert, V. M.; Leonori, D. Angew. Chem. Int. Ed. 2017, 56, 14948; (h) Wu, K.; Du, Y.; Wang, T. Org. Lett. 2017, 19, 5669; (i) Yu, X.; Zhou, F.; Chen, J.; Xiao, W. Acta Chim. Sinica 2017, 75, 86 (in Chinese). (余晓叶, 周帆, 陈加荣, 肖文精, 化学学报, 2017, 75, 86); (j) An, X.-D.; Zhang, H.; Xu, Q.; Yu, L.; Yu, S. Chin. J. Chem. 2018, 36, 1147; (k) Jin, J.; Zhang, F.; Wang, Y. Acta Chim. Sinica 2019, 77, 889 (in Chinese). (靳继康, 张凤莲, 汪义丰, 化学学报. 2019, 77, 889).
[7] For some reviews, see: (a) Sabir, S.; Kumar, G.; Jat, J. L. Org. Biomol. Chem. 2018, 16, 3314; (b) Xu, L.; Xu, H.; Lin, H.; Dai, H. Chin. J. Org. Chem. 2018, 38, 1940 (in Chinese). (徐琳琳, 徐辉, 林海霞, 戴辉雄, 有机化学, 2018, 38, 1940). For recent examples, see: (c) Legnani, L.; Prina Cerai, G.; Morandi, B. ACS Catal. 2016, 6, 8162; (d) Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science 2016, 353, 1144; (e) Zou, M.; Liu, J.; Tang, C.; Jiao, N. Org. Lett. 2016, 18, 3030; (f) Liu, J.; Wu, K.; Shen, T.; Liang, Y.; Zou, M.; Zhu, Y.; Li, X.; Li, X.; Jiao, N. Chem. - Eur. J. 2017, 23, 563; (g) D'Amato, E. M.; Borgel, J.; Ritter, T. Chem. Sci. 2019, 10, 2424.
[8] Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Nat. Rev. Chem. 2017, 1, 0088.
[9] (a) Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449; (b) Xiao, Q.; Tian, L.; Tan, R.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. Org. Lett. 2012, 14, 4230; (c) Zhu, C.; Li, G.; Ess, D. H.; Falck, J. R.; Kurti, L. J. Am. Chem. Soc. 2012, 134, 18253; (d) Voth, S.; Hollett, J. W.; McCubbin, J. A. J. Org. Chem. 2015, 80, 2545.
Outlines

/