Review

Advances in the Chemical Looping Ammonia Synthesis

  • Feng Sheng ,
  • Gao Wenbo ,
  • Cao Hujun ,
  • Guo Jianping ,
  • Chen Ping
Expand
  • a Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    b Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China

Received date: 2020-06-04

  Online published: 2020-07-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21872137, 21922205) and Youth Innovation Promotion Association Chinese Academy of Sciences (No. 2018213).

Abstract

Ammonia is not only the main raw material of nitrogen fertilizer, but also a promising energy carrier for the storage and utilization of renewable energy. The fossil fuel-based Haber-Bosch ammonia synthesis industry is an energy-consuming and high CO2-emission process. For the sustainable growth of human society, it is critically important to develop "green" ammonia synthesis processes driven by renewable energies. This scenario motivates growing interests on ammonia synthesis via heterogeneous catalysis, electro-chemical and photo-chemical routes as well as chemical looping process. Chemical looping ammonia synthesis (CLAS) process involves a series of individual reactions which produce ammonia in a distinctly different manner to the catalytic process. The CLAS could be operated under ambient pressure, and the switching on/off operation is flexible. Therefore, CLAS may be more amenable to variable and intermittent operation compared to the conventional catalytic process. More importantly, the competitive adsorption of N2 and H2 or H2O in the catalytic process can be circumvented to a great extent, which opens new opportunities for the design and development of nitrogen carriers especially for low-temperature ammonia production. Because of these unique features, the application of chemical looping technology for ammonia synthesis has been received increasing attention in recent years. The development of high-efficiency nitrogen carriers is the key component for the implementation of CLAS. A wide range of materials including metal nitrides, metal imides, nitride-hydrides and oxynitrides have been evaluated as nitrogen carriers for CLAS. The knowledge accumulated during the past decade will no doubt beneficial for the further optimization and development of nitrogen carriers. This article reviews the research progress in the field of chemical looping ammonia synthesis in recent years, with the focuses on the materials development of nitrogen carriers in CLAS. Furthermore, the challenges and future directions of CLAS are also discussed. With the development of nitrogen carriers and process design, CLAS would potentially play an important role in the green ammonia synthesis as well as the future energy system.

Cite this article

Feng Sheng , Gao Wenbo , Cao Hujun , Guo Jianping , Chen Ping . Advances in the Chemical Looping Ammonia Synthesis[J]. Acta Chimica Sinica, 2020 , 78(9) : 916 -927 . DOI: 10.6023/A20060207

References

[1] Liu, H. Z. Chem. Ind. Eng. Prog. 2013, 32, 1995(in Chinese). (刘化章, 化工进展, 2013, 32, 1995.)
[2] Klerke, A.; Christensen, C. H.; Norskov, J. K.; Vegge, T. J. Mater. Chem. 2008, 18, 2304.
[3] Guo, J. P.; Chen, P. Chem 2017, 3, 709.
[4] Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W. I. F.; Bowen, P. J. Prog. Energy Combust. Sci. 2018, 69, 63.
[5] Smith, C.; Hill, A. K.; Torrente-Murciano, L. Energy Environ. Sci. 2020, 13, 331.
[6] Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. Nat. Geosci. 2008, 1, 636.
[7] Wang, Q. R.; Guo, J. P.; Chen, P. J. Energy Chem. 2019, 36, 25(in Chinese). (王倩茹, 郭建平, 陈萍, 能源化学, 2019, 36, 25.)
[8] Norskov, J. K.; Chen, J. G. Sustainable Ammonia Synthesis, US Department of Energy, 2016.
[9] Zeng, L.; Cheng, Z.; Fan, J. A.; Fan, L. S.; Gong, J. L. Nat. Rev. Chem. 2018, 2, 349.
[10] Gao, W. B.; Guo, J. P.; Wang, P. K.; Wang, Q. R.; Chang, F.; Pei, Q. J.; Zhang, W. J.; Liu, L.; Chen, P. Nat. Energy 2018, 3, 1067.
[11] Koerts, T.; Vansanten, R. A. J. C. S. Chem. Commun. 1991, 1281.
[12] Wang, Q. R.; Guo, J. P.; Chen, P. Joule 2020, 4, 705.
[13] Zeng, L.; Luo, S. W.; Li, F. X.; Fan, L. S. Sci. China Chem. 2012, 42, 260(in Chinese). (曾亮, 罗四维, 李繁星, 范良士, 中国科学:化学, 2012, 42, 260.)
[14] Chen, S.; Zeng, L.; Mu, R. T.; Xiong, C. Y.; Zhao, Z. J.; Zhao, C. J.; Pei, C. L.; Peng, L. M.; Luo, J.; Fan, L. S.; Gong, J. L. J. Am. Chem. Soc. 2019, 141, 18653.
[15] Gao, Y. F.; Wang, X. J.; Liu, J. C.; Huang, C. D.; Zhao, K.; Zhao, Z. L.; Wang, X. D.; Li, F. X. Sci. Adv. 2020, 6, eaaz9339.
[16] Tomkins, P.; Ranocchiari, M.; van Bokhoven, J. A. Acc. Chem. Res. 2017, 50, 418.
[17] Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. J. Am. Chem. Soc. 2005, 127, 1394.
[18] Cheng, Z.; Baser, D. S.; Nadgouda, S. G.; Qin, L.; Fan, J. A.; Fan, L. S. ACS Energy Lett. 2018, 3, 1730.
[19] Huang, C. D.; Wu, J.; Chen, Y. T.; Tian, M.; Rykov, A. I.; Hou, B. L.; Lin, J.; Chang, C. R.; Pan, X. L.; Wang, J. H.; Wang, A. Q.; Wang, X. D. Commun. Chem. 2018, 1, 55.
[20] Liu, Y.; Qin, L.; Cheng, Z.; Goetze, J. W.; Kong, F. H.; Fan, J. A.; Fan, L. S. Nat. Commun. 2019, 10, 6.
[21] Xu, B. J.; Bhawe, Y.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9260.
[22] Abanades, S.; Flamant, G. Solar Energy 2006, 80, 1611.
[23] Zhu, X.; Imtiaz, Q.; Donat, F.; Muller, C. R.; Li, F. X. Energy Environ. Sci. 2020, 13, 772.
[24] Duan, Y. F.; Chen, C. Z.; Zhang, J. S.; Wang, X. H.; Wei, J. J. Sci. China Chem. 2020, 50, 337(in Chinese). (段一菲, 陈存壮, 张军社, 王新赫, 魏进家, 中国科学:化学, 2020, 50, 337.)
[25] Jennings, J. R. Catalytic ammonia synthesis:Fundamentals and practice, Plenum Press, New York, 1991.
[26] Frank, A. R. Trans. Faraday Soc. 1908, 4, 099.
[27] Michalsky, R.; Pfromm, P. H. AlChE J. 2012, 58, 3203.
[28] Haber, F.; van Oordt, G. Z. Anorg. Chem. 1905, 44, 341.
[29] Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.; Kanatzidis, M. G.; King, P.; Lancaster, K. M.; Lymar, S. V.; Pfromm, P.; Schneider, W. F.; Schrock, R. R. Science 2018, 360, eaar6611.
[30] Galvez, M. E.; Halmann, M.; Steinfeld, A. Ind. Eng. Chem. Res. 2007, 46, 2042.
[31] Galvez, M. E.; Frei, A.; Halmann, M.; Steinfeld, A. Ind. Eng. Chem. Res. 2007, 46, 2047.
[32] Molisani, A. L.; Yoshimura, H. N. Mater. Res. Bull. 2010, 45, 733.
[33] Wu, Y.; Jiang, G. D.; Zhang, H. B.; Sun, Z.; Gao, Y.; Chen, X. P.; Liu, H. Z.; Tian, H. J.; Lai, Q. H.; Fan, M. H.; Liu, D. Chem. Commun. 2017, 53, 10664.
[34] Gao, Y.; Wu, Y.; Zhang, Q.; Chen, X. P.; Jiang, G. D.; Liu, D. Int. J. Hydrogen Energy 2018, 43, 16589.
[35] Wu, Y.; Gao, Y.; Zhang, Q.; Cai, T.; Chen, X.; Liu, D.; Fan, M. Fuel 2020, 264, 116821.
[36] Zhang, Q.; Wu, Y.; Gao, Y.; Chen, X.; Liu, D.; Fan, M. Int. J. Hydrogen Energy 2020, 45, 9903.
[37] Michalsky, R.; Pfromm, P. H. Solar Energy 2011, 85, 2642.
[38] Michalsky, R.; Pfromm, P. H. J. Phys. Chem. C 2012, 116, 23243.
[39] Michalsky, R.; Parman, B. J.; Amanor-Boadu, V.; Pfromm, P. H. Energy 2012, 42, 251.
[40] Heidlage, M. G.; Kezar, E. A.; Snow, K. C.; Pfromm, P. H. Ind. Eng. Chem. Res. 2017, 56, 14014.
[41] Medford, A. J.; Vojvodic, A.; Hummelshoj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Norskov, J. K. J. Catal. 2015, 328, 36.
[42] Appl, M. Ammonia:Principles and industrial practice, Wiley-VCH, Weinheim, 1999.
[43] Michalsky, R.; Avram, A. M.; Peterson, B. A.; Pfromm, P. H.; Peterson, A. A. Chem. Sci. 2015, 6, 3965.
[44] Laassiri, S.; Zeinalipour-Yazdi, C. D.; Catlow, C. R. A.; Hargreaves, J. S. J. Appl. Catal. B 2018, 223, 60.
[45] Michalsky, R.; Pfromm, P. H.; Steinfeld, A. Interface Focus 2015, 5, 20140084.
[46] Shan, N.; Chikan, V.; Pfromm, P.; Liu, B. J. Phys. Chem. C 2018, 122, 6109.
[47] Shan, N. N.; Huang, C. R.; Lee, R. T.; Manavi, N.; Xu, L. B.; Chikan, V.; Pfromm, P. H.; Liu, B. ChemCatChem 2020, 12, 2233.
[48] Jacobsen, C. J. H. Chem. Commun. 2000, 1057.
[49] Jacobsen, C. J. H.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Norskov, J. K. J. Am. Chem. Soc. 2001, 123, 8404.
[50] Kojima, R.; Aika, K. Chem. Lett. 2000, 514.
[51] McKay, D.; Gregory, D. H.; Hargreaves, J. S. J.; Hunter, S. M.; Sun, X. Chem. Commun. 2007, 3051.
[52] Hunter, S. M.; McKay, D.; Smith, R. J.; Hargreaves, J. S. J.; Gregory, D. H. Chem. Mater. 2010, 22, 2898.
[53] Hunter, S. M.; Gregory, D. H.; Hargreaves, J. S. J.; Richard, M.; Duprez, D.; Bion, N. ACS Catal. 2013, 3, 1719.
[54] Zeinalipour-Yazdi, C. D.; Hargreaves, J. S. J.; Catlow, C. R. A. J. Phys. Chem. C 2015, 119, 28368.
[55] Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2012, 55, 1046.
[56] Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2013, 56, 1963.
[57] Roy, D.; Navarro-Vazquez, A.; Schleyer, P. V. R. J. Am. Chem. Soc. 2009, 131, 13045.
[58] Swearer, D. F.; Knowles, N. R.; Everitt, H. O.; Halas, N. J. ACS Energy Lett. 2019, 4, 1505.
[59] McEnaney, J. M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nørskov, J. K. Energy Environ. Sci. 2017, 10, 1621.
[60] Goshome, K.; Miyaoka, H.; Yamamoto, H.; Ichikawa, T.; Ichikawa, T.; Kojima, Y. Mater. Trans. 2015, 56, 410.
[61] Yamaguchi, S.; Ichikawa, T.; Wang, Y. M.; Nakagawa, Y.; Isobe, S.; Kojima, Y.; Miyaoka, H. ACS Omega 2017, 2, 1081.
[62] Yamaguchi, T.; Shinzato, K.; Yamamoto, K.; Wang, Y.; Nakagawa, Y.; Isobe, S.; Ichikawa, T.; Miyaoka, H.; Ichikawa, T. Int. J. Hydrogen Energy 2020, 45, 6806.

[63] Gao, W. B.; Guo, J. P.; Chen, P. Chin. J. Chem. 2019, 37, 442.
[64] Veser, G. Nat. Energy 2018, 3, 1025.
[65] Hagen, S.; Barfod, R.; Fehrmann, R.; Jacobsen, C. J. H.; Teunissen, H. T.; Chorkendorff, I. J. Catal. 2003, 214, 327.
[66] Liu, T.; Temprano, I.; Jenkins, S. J.; King, D. A. J. Chem. Phys. 2013, 139, 184708
[67] Vojvodic, A.; Medford, A. J.; Studt, F.; Abild-Pedersen, F.; Khan, T. S.; Bligaard, T.; Norskov, J. K. Chem. Phys. Lett. 2014, 598, 108.
[68] Michalsky, R.; Steinfeld, A. Catal. Today 2017, 286, 124.
[69] Bartel, C. J.; Rumptz, J. R.; Weimer, A. W.; Holder, A. M.; Musgrave, C. B. ACS Appl. Mater. Interfaces 2019, 11, 24850.
Outlines

/