Review

Recent Progress on Room-Temperature Phosphorescent Materials of Organic Small Molecules

  • Zhang Liang ,
  • Zhao Wen-Long ,
  • Li Meng ,
  • Lu Hai-Yan ,
  • Chen Chuan-Feng
Expand
  • a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    b College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China;
    c University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-06-17

  Online published: 2020-07-15

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 91956119, 21971235, 21871272).

Abstract

Room-temperature phosphorescence (RTP) can not only intuitively reflect the excited state transition process of the phosphorescent luminescence, but also has wide potential applications in optoelectronics, sensing, bioimaging and security devices. Consequently, more and more attention and interests on RTP materials have been attracted, which turned it to be one of hot topics in luminescence materials, especially, organic luminescence materials in recent years. The halogen bonds and hydrogen bonds between the molecules can fix the phosphor to suppress non-radiative transitions. A twisted donor-acceptor skeleton can promot efficient thermally activated delayed fluorescence (TADF) and also benefit to the RTP. Moreover, circularly polarized room-temperature phosphorescence (CP-RTP) also remains a daunting challenge to implant circularly polarized luminescence (CPL) in metal-free RTP materials. This review summarizes recent research progress on RTP of small organic molecules, mainly focusing on RTP materials based on hydrogen bonds, RTP materials containing halogens, RTP materials based on D-A structures and RTP materials with CPL properties.

Cite this article

Zhang Liang , Zhao Wen-Long , Li Meng , Lu Hai-Yan , Chen Chuan-Feng . Recent Progress on Room-Temperature Phosphorescent Materials of Organic Small Molecules[J]. Acta Chimica Sinica, 2020 , 78(10) : 1030 -1040 . DOI: 10.6023/A20060243

References

[1] Wang, H.; Meng, L. Q.; Shen, X. X.; Wei, X.; Zheng, X.; Lv, X.; Yi, Y.; Wang, Y.; Wang, P. Adv. Mater. 2015, 27, 4041.
[2] Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9, 840.
[3] Li, J.; Jiang, Y.; Cheng, J.; Su, H.; Lam, J. W. Y.; Sung, H. H. Y.; Wong, K. S.; Kwok, H. S.; Tang, B. Z. Phys. Chem. Chem. Phys. 2015, 17, 1134.
[4] Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst, J. V.; Pu, K. Nat. Biotechnol. 2017, 35, 1102.
[5] Wang, F.; Tao, Y.; Huang, W. Acta Chim. Sinica 2015, 73, 9(in Chinese). (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9.)
[6] Ma, Y.; Chen, K.; Guo, Z.; Liu, S.; Zhao, Q.; Wong, W. Y. Acta Chim. Sinica 2020, 78, 23(in Chinese). (马云, 陈可欣, 郭则灵, 刘淑娟, 赵强, 黄维扬, 化学学报, 2020, 78, 23.)
[7] Zhou, Y.; Chen, Y. Z.; Cao, J. H.; Yang, Q. Z.; Wu, L. Z.; Tung, C. H.; Wu, D. Y. Dyes Pigm. 2015, 112, 162.
[8] Mukherjee, S.; Thilagar, P. Chem. Commun. 2015, 51, 10988.
[9] Ma, H.; Peng, Q.; An, Z.; Huang, W.; Shuai, Z. J. Am. Chem. Soc. 2019, 141, 1010.
[10] Xiao, L.; Fu, H. Chem. Eur. J. 2019, 25, 714.
[11] Hirata, S. Adv. Opt. Mater. 2017, 5, 1700116.
[12] Forni, A.; Lucenti, E.; Botta, C.; Cariati, E. J. Mater. Chem. C 2018, 6, 4603.
[13] Xu, S.; Chen, R.; Zheng, C.; Huang, W. Adv. Mater. 2016, 28, 9920.
[14] Zhang, T.; Ma, X.; Wu, H.; Zhu, L.; Zhao, Y.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 2.
[15] Gan, N.; Shi, H.; An, Z.; Huang, W. Adv. Funct. Mater. 2018, 28, 1802657.
[16] Ma, X.; Wang, J.; Tian, H. Acc. Chem. Res. 2019, 52, 738.
[17] Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.
[18] Cai, S.; Shi, H.; Li, J.; Gu, L.; Ni, Y.; Cheng, Z.; Wang, S.; Xiong, W. W.; Li, L.; An, Z.; Huang, W. Adv. Mater. 2017, 29, 1701244.
[19] An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Nat. Mater. 2015, 14, 685.
[20] Zhao, W.; He, Z.; Lam, J. W. Y.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Chem. 2016, 1, 592.
[21] Gu, L.; Shi, H.; Bian, L.; Gu, M.; Ling, K.; Wang, X.; Ma, H.; Cai, S.; Ning, W.; Fu, L.; Wang, H.; Wang, S.; Gao, Y.; Yao, W.; Huo, F.; Tao, Y.; An, Z.; Liu, X.; Huang, W. Nat. Photonics 2019, 13, 406.
[22] Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Angew. Chem., Int Ed. 2014, 53, 11177.
[23] Gong, Y.; Zhao, L.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y.; Tang, B. Z. Chem. Sci. 2015, 6, 4438.
[24] Chai, Z.; Wang, C.; Wang, J.; Fan, Liu.; Xie, Y.; Zhang, Y. Z.; Li, J. R.; Li, Q.; Li, Z. Chem. Sci. 2017, 8, 8336.
[25] Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Mater. Chem. Front. 2018, 2, 2124.
[26] Li, D.; Lu, F.; Wang, J.; Hu, W.; Cao, X. M.; Ma, X.; Tian, H. J. Am. Chem. Soc. 2018, 140, 1916.
[27] Chen, J.; Yu, T.; Ubba, E.; Yang, Z.; Zhang, Y.; Liu, S.; Xu, J.; Aldred, M. P.; Chi, Z. Adv. Opt. Mater. 2019, 7, 1801593.
[28] Chen, X.; Liu, Z. F.; Jin, W. J. J. Phys. Chem. A. 2020, 124, 2746.
[29] Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Nat. Chem. 2011, 3, 205.
[30] Xiao, L.; Wu, Y.; Yu, Z.; Xu, Z.; Li, J.; Liu, Y.; Yao, J.; Fu, H. Chem. Eur. J. 2018, 24, 1801.
[31] Li, B.; Gong, Y.; Wang, L.; Lin, H.; Li, Q.; Guo, F.; Li, Z.; Peng, Q.; Shuai, Z.; Zhao, L.; Zhang, Y. J. Phys. Chem. Lett. 2019, 10, 7141.
[32] Goudappagouda; Manthanath, A.; Wakchaure, V. C.; Ranjeesh, K. C.; Das T.; Vanka, K.; Nakanishi, T.; Babu, S. S. Angew. Chem., Int. Ed. 2019, 58, 2284.
[33] Zhang, L.; Li, M.; Gao, Q.; Chen, C. F. Chin. J. Org. Chem. 2020, 40, 516(in Chinese). (张亮, 李猛, 高庆宇, 陈传峰, 有机化学, 2020, 40, 516.)
[34] She, P.; Yu, Y.; Qin, Y.; Zhang, Y.; Li, F.; Ma, Y.; Liu, S.; Huang, W.; Zhao, Q. Adv. Opt. Mater. 2020, 8, 1901437.
[35] Yu, L.; Wu, Z.; Zhong, C.; Xie, G.; Zhu, Z.; Ma D.; Yang, C. Adv. Opt. Mater. 2017, 5, 1700588.
[36] Xiong, Y.; Zhao, Z.; Zhao, W.; Ma, H.; Peng, Q.; He, Z.; Zhang, X.; Chen, Y.; He, X.; Lam, J. W. Y.; Tang, B. Z. Angew. Chem., Int. Ed. 2018, 57, 7997.
[37] Zhou, Y.; Qin, W.; Du, C.; Gao, H.; Zhu, F.; Liang, G. Angew. Chem., Int. Ed. 2019, 58, 12102.
[38] Zhang, L.; Li, M.; Hu, T. P.; Wang, Y. F.; Shen, Y. F.; Yi, Y. P.; Lu, H. Y.; Gao, Q. Y.; Chen, C. F. Chem. Commun. 2019, 55, 12172.
[39] Zhang, L.; Li, M.; Gao, Q. Y.; Chen, C. F. Chem. Commun. 2020, 56, 4296.
[40] Hirata, S.; Vacha, M. J. Phys. Chem. Lett. 2016, 7, 1539.
[41] Chen, W.; Tian, Z.; Li, Y.; Jiang, Y.; Liu, M.; Duan, P. Chem. Eur. J. 2018, 24, 17444.
[42] Liang, X.; Liu, T. T.; Yan, Z. P.; Zhou, Y.; Su, J.; Luo, X. F.; Wu, Z. G.; Wang, Y.; Zheng, Y. X.; Zuo, J. L. Angew. Chem., Int. Ed. 2019, 58, 17220.
[43] Li, H.; Li, H.; Wang, W.; Wang, S.; Yang, Q.; Jiang, Y.; Zheng, C.; Huang, W.; Chen, R. Angew. Chem., Int. Ed. 2020, 59, 4756.
[44] Li, M.; Lin, W. B.; Fang, L.; Chen, C. F. Acta Chim. Sinica 2017, 75, 1150(in Chinese). (李猛, 林伟彬, 房蕾, 陈传峰, 化学学报, 2017, 75, 1150.)
[45] Zhang, D. W.; Li, M.; Chen, C. F. Chem. Soc. Rev. 2020, 49, 1331.
Outlines

/