Article

Monte Carlo Simulations of Composition-Related Structural Transition of Disordered Peptides: The Case Study of Random Peptides Composed of Lysine, Glutamic Acids and Isoleucine

  • Zhang Pengcheng ,
  • Guo Jia ,
  • Zhu Gen ,
  • Fang Wenyu ,
  • Tang Qianyuan ,
  • Bao Lei ,
  • Kang Wenbin
Expand
  • a Public Health and Management School, Hubei University of Medicine, Shiyan 442000, China;
    b Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Shiyan 442000, China;
    c Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan

Received date: 2020-06-18

  Online published: 2020-07-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 11947006), the Cultivating Project for Young Scholar at Hubei University of Medicine (Nos. 2019QDJZR12, 2018QDJZR22), and the Natural Science Foundation of Hubei Provincial Department of Education (No. B2018434).

Abstract

Intrinsically disordered proteins (IDPs) are a unique class of proteins without stable native structures. Like globular proteins, the structure and the dynamics of IDPs are also encoded in their amino acid sequences. IDPs usually contain a larger proportion of hydrophilic or charged amino acids than globular proteins. Interestingly, even with the same hydrophobicity and number of charged residues, the differences in sequence arrangement can lead to different structures of the peptides. In this work, to model such an effect, we conduct molecular simulations based on a series of peptides with randomly composed of charged residues (including glutamic acids and lysines) and isoleucine. In the simulation, we use the ABSINTH (self-Assembly of Biomolecules Studied by an Implicit, Novel, and Tunable Hamiltonian) implicit solvation model and employ the all-atom Markov Chain Monte Carlo method with replica-exchange sampling. Our simulations clearly show a transition between the extended conformations to compact structures for each peptide. The corresponding transition temperature is found to be dependent on the portion of the hydrophobic and charged residues. When the mean hydrophobicity is larger than a certain threshold, the transition temperature is higher than the room temperature, and vice versa. Such a result has outlined the borderline between intrinsically disordered proteins and the folded proteins. It is also consistent with previous analysis based on bioinformatics techniques. Furthermore, the contributions of different kinds of interactions to the structural variation of peptides are analyzed based on the contact statistics and the charge-pattern dependence of the gyration radii of the peptides. Our simulation results imply that the hydrophobicity of the sequence dominates the order-disorder transitions of IDPs, while the charge distribution can also affect such transitions. Based on these results, we achieve a comprehensive understanding of the sequence-structure relation of the natural proteins and the underlying physics. Our results may broaden our perspective of the sequence-structure relation of protein systems and shed light on the design of both ordered and disordered proteins.

Cite this article

Zhang Pengcheng , Guo Jia , Zhu Gen , Fang Wenyu , Tang Qianyuan , Bao Lei , Kang Wenbin . Monte Carlo Simulations of Composition-Related Structural Transition of Disordered Peptides: The Case Study of Random Peptides Composed of Lysine, Glutamic Acids and Isoleucine[J]. Acta Chimica Sinica, 2020 , 78(9) : 994 -1000 . DOI: 10.6023/A20060249

References

[1] Kister, A. E.; Potapov, V. Biochem. Soc. Trans. 2013, 41, 616.
[2] Sadowski, M. I.; Jones, D. T. Curr. Opin. Struct. Biol. 2009, 19, 357.
[3] Shenoy, S. R.; Jayaram, B. Curr. Protein Pept. Sci. 2010, 11, 498.
[4] Chu, X.; Gan, L.; Wang, E.; Wang, J. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E2342.
[5] Daggett, V.; Fersht, A. Nat. Rev. Mol. Cell Biol. 2003, 4, 497.
[6] Daggett, V.; Fersht, A. R. Trends Biochem. Sci. 2003, 28, 18.
[7] Dinner, A. R.; Sali, A.; Smith, L. J.; Dobson, C. M.; Karplus, M. Trends Biochem. Sci. 2000, 25, 331.
[8] Leelananda, S. P.; Jernigan, R. L.; Kloczkowski, A. J. Comput. Biol. 2016, 23, 400.
[9] Li, H.; Helling, R.; Tang, C.; Wingreen, N. Science 1996, 273, 666.
[10] Matouschek, A.; Serrano, L.; Fersht, A. R. J. Mol. Biol. 1992, 224, 819.
[11] Onuchic, J. N.; Luthey-Schulten, Z.; Wolynes, P. G. Annu. Rev. Phys. Chem. 1997, 48, 545.
[12] Schug, A.; Onuchic, J. N. Curr. Opin. Pharmacol. 2010, 10, 709.
[13] Wang, J.; Wang, W. Nat. Struct. Biol. 1999, 6, 1033.
[14] Wang, J.; Wang, W. Adv. Phys. X 2016, 1, 444.
[15] Wolynes, P. G. Biochimie 2015, 119, 218.
[16] Apicella, A.; Marascio, M.; Colangelo, V.; Soncini, M.; Gautieri, A.; Plummer, C. J. J. Biomol. Struct. Dyn. 2017, 35, 1813.
[17] Dyson, H. J.; Wright, P. E. Nat. Rev. Mol. Cell Biol. 2005, 6, 197.
[18] Gao, M.; Yang, F.; Zhang, L.; Su, Z.; Huang, Y. J. Biomol. Struct. Dyn. 2018, 36, 1171.
[19] Jain, A.; Ashbaugh, H. S. J. Chem. Phys. 2008, 129, 174505.
[20] Kang, W. B.; He, C.; Liu, Z. X.; Wang, J.; Wang, W. J. Biomol. Struct. Dyn. 2019, 37 1956.
[21] Khan, S. H.; Jasuja, R.; Kumar, R. J. Biomol. Struct. Dyn. 2017, 35, 2248.
[22] Migliaccio, A. R.; Uversky, V. N. J. Biomol. Struct. Dyn. 2018, 36, 1617.
[23] Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biochem. 2014, 83, 553.
[24] Singh, I.; Singh, S.; Uversky, V. N.; Chandra, R. J. Biomol. Struct. Dyn. 2017, 1.
[25] Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biophys. 2008, 37, 215.
[26] Yacoub, H. A.; Al-Maghrabi, O. A.; Ahmed, E. S.; Uversky, V. N. J. Biomol. Struct. Dyn. 2017, 35, 836.
[27] Uversky, V. N. Protein Sci. 2002, 11, 739.
[28] Uversky, V. N.; Gillespie, J. R.; Fink, A. L. Proteins 2000, 41, 415.
[29] Das, R. K.; Pappu, R. V. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13392.
[30] Mao, A. H.; Crick, S. L.; Vitalis, A.; Chicoine, C. L.; Pappu, R. V. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 8183.
[31] Kang, W. B.; Wang, J.; Wang, W. Acta Phys. Sin. 2018, 67, 058701.
[32] Yue, K.; Dill, K. A. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 146.
[33] Ashbaugh, H. S.; Asthagiri, D. J. Chem. Phys. 2008, 129, 204501.
[34] Ashbaugh, H. S.; Hatch, H. W. J. Am. Chem. Soc. 2008, 130, 9536.
[35] Vitalis, A.; Pappu, R. V. J. Comput. Chem. 2009, 30, 673.
[36] Vitalis, A.; Pappu, R. V. Annu. Rep. Comput. Chem. 2009, 5, 49.
[37] Jiang, P.; Yasar, F.; Hansmann, U. H. J. Chem. Theory Comput. 2013, 9, 3816.
[38] Mitsutake, A.; Okamoto, Y. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2009, 79, 047701.
[39] Nanias, M.; Czaplewski, C.; Scheraga, H. A. J. Chem. Theory Comput. 2006, 2, 513.
[40] Yoda, T.; Sugita, Y.; Okamoto, Y. Proteins 2007, 66, 846.
[41] Kyte, J.; Doolittle, R. F. J. Mol. Biol. 1982, 157, 105.
[42] Das, R. K.; Crick, S. L.; Pappu, R. V. J. Mol. Biol. 2012, 416, 287.
[43] Pappu, R. V.; Wang, X.; Vitalis, A.; Crick, S. L. Arch. Biochem. Biophys. 2008, 469, 132.
[44] Jin, F.; Liu, Z. R.; Biophys. J. 2013, 104, 488.
[45] Ruff, K. M.; Pappu, R. V.; Holehouse, A. S. Curr. Opin. Struct. Biol. 2019, 56, 1.
[46] Choi, J. M.; Dar, F.; Pappu, R. V. PLOS Comp. Biol. 2019, 15, e1007028.
[47] Zhou, H. X.; Nguemaha, V.; Mazarakos, K.; Qin, S. B. Trends Biochem. Sci. 2018, 43, 499.
[48] Dignon, G. L.; Zheng, W. W.; Best, R. B.; Kim, Y. C.; Mittal, J. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9929.
[49] Uversky, V. N. Curr. Opin. Struc. Biol. 2017, 44, 18.
[50] Zhang, P. C.; Fang, W. Y.; Bao, L.; Kang, W. B. Acta Phys. Sin. 2020, 69, 138701(in Chinese). (张鹏程, 方文玉, 鲍磊, 康文斌, 物理学报, 2020, 69, 138701.)
[51] Wang, G. C.; Cui, Y. B.; Sun, Y. H.; Zhong, B. Acta Chim. Sinica 1998, 56, 867(in Chinese). (王贵昌, 崔永斌, 孙予罕, 钟炳, 化学学报, 1998, 56, 867.)
[52] Cao, D. P.; Wang, W. C.; Duan, X.; Jiao, Q. Z. Acta Chim. Sinica 2001, 59, 297(in Chinese). (曹达鹏, 汪文川, 段雪, 矫庆泽, 化学学报, 2001, 59, 297.)
[53] Wang, D. C. Protein Engineering, Vol. 1, Chemical Industry Press, Beijing, 2008, p. 65(in Chinese). (王大成, 蛋白质工程, 化学工业出版社, 北京, 2008, p. 65)
[54] Deng, H. Y.; Jia, Y.; Zhang, Y Acta Phys. Sin. 2016, 65, 178701(in Chinese). (邓海游, 贾亚, 张阳, 物理学报, 2016, 65, 178701.)
Outlines

/