Account

Exploration of Porous Organic Polymers as a Platform for Biomimetic Catalysis

  • Sun Qi ,
  • Xiao Feng-Shou
Expand
  • a College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    b Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310028, China

Received date: 2020-06-12

  Online published: 2020-07-17

Supported by

Project supported by the Fundamental Research Funds for the Central Universities (No. 17221012001) and the National Natural Science Foundation of China (No. 21720102001).

Abstract

Nature has served as a dominant source of inspiration in the area of chemistry, serving as prototypes for the design of materials with proficient performance. In this account, we present our effort to explore porous organic polymers (POPs) as a platform for the construction of biomimetic catalysts to enable new technologies to achieve efficient conversions. For each aspect, we firstly describe the chemical basis of nature, followed by presenting the principles and design strategies involved for functionalizing POPs along with a summary of critical requirements for materials, culminating in a demonstration of unique features of POPs. Our endeavors of using POPs to address the fundamental scientific problems related to biomimetic catalysis are then presented to show their enormous potential and capabilities for a wide range of catalytic transformations. To conclude, a personal perspective on the challenges and opportunities in this emerging field are presented.

Cite this article

Sun Qi , Xiao Feng-Shou . Exploration of Porous Organic Polymers as a Platform for Biomimetic Catalysis[J]. Acta Chimica Sinica, 2020 , 78(9) : 827 -832 . DOI: 10.6023/A20060227

References

[1] Rothenberg, G. Catalysis:Concepts and Green Applications, Wiley-VCH, Weinheim, Germany, 2011.
[2] (a) Breslow, R. Acc. Chem. Res. 1995, 28, 146;
(b) Sun, Q.; Aguila, B.; Ma, S. Chem 2018, 4, 2736.
[3] Benkovic, S. J.; Hammes-Schiffer, S. Science 2003, 301, 1196.
[4] (a) Das, S.; Heasman, P.; Ben, T.; Qiu, S. Chem. Rev. 2017, 117, 1515;
(b) Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Soc. Rev. 2015, 44, 6018;
(c) Sun, Q.; Aguila, B.; Song, Y.; Ma, S. Acc. Chem. Res. 2020, 53, 812;
(d) Sun, Q.; Dai, Z.; Meng, X.; Wang, L.; Xiao, F.-S. ACS Catal. 2015, 5, 4556;
(e) Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Adv. Sci. 2019, 6, 1801410;
(f) Wang, S.; Sun, Q.; Chen, W.; Tang, Y.; Aguila, B.; Pan, Y.; Zheng, A.; Yang, Z.;Wojtas, L.;Ma, S.; Xiao, F.-S. Matter 2020, 2, 416;
(g) Xiang, Z.; Dai, Q.; Chen, J.-F.; Dai, L. Adv. Mater. 2016, 28, 6253;
(h) Wang, K.; Yang, L.-M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tian, B.; Cooper, A. Angew. Chem. Int. Ed. 2017, 56, 14149;
(i) Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681(in Chinese). (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681);
(j) Liu, J. G.; Zhang, M. Y.; Wang, N.; Wang, C. G.; Ma, L. L. Acta Chim. Sinica 2020, 78, 311(in Chinese). (刘建国, 张明月, 王楠, 王晨光, 马隆龙, 化学学报, 2020, 78, 311.)
[5] Hu, K.; Tang, Y.; Cui, J.; Gong, Q.; Hu, C.; Wang, S.; Dong, K.; Meng, X.; Sun, Q.; Xiao, F.-S. Chem. Commun. 2019, 55, 9180.
[6] (a) Sun, Q.; Ma, S.; Dai, Z.; Meng, X.; Xiao, F.-S. J. Mater. Chem. A 2015, 3, 23871;
(b) Sun, Q.; Jin, Y.; Aguila, B.; Meng, X.; Ma, S.; Xiao, F.-S. ChemSusChem 2017, 10, 1160.
[7] Sun, Q.; Wang, S.; Aguila, B.; Meng, X.; Ma, S.; Xiao, F.-S. Nat. Commun. 2018, 9, 3236.
[8] Sun, Q.; Tang, Y.; Aguila, B.; Wang, S.; Xiao, F.-S.; Thallapally, P. K.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Angew. Chem. Int. Ed. 2019, 58, 8670.
[9] Nestl, B. M.; Hauer, B. ACS Catal. 2014, 4, 3201.
[10] Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675.
[11] Sun, Q.; Jiang, M.; Shen, Z.; Jin, Y.; Pan, S.; Wang, L.; Meng, X.; Chen, W.; Ding, Y.; Li, J.; Xiao, F.-S. Chem. Commun. 2014, 50, 11844.
[12] Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Catal. Today 2017, 298, 40.
[13] Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F.-S. J. Am. Chem. Soc. 2015, 137, 5204.
[14] Dong, K.; Sun, Q.; Tang, Y.; Shan, C.; Aguila, B.; Wang, S.; Meng, X.; Ma, S.; Xiao, F.-S. Nat. Commun. 2019, 10, 3059.
[15] Chen, F.; Wang, S.; Sun, Q.; Xiao, F.-S. ChemCatChem 2020, 12, 3285.
[16] Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Mater. 2017, 29, 5720.
[17] Dai, Z.; Sun, Q.; Chen, F.; Pan, S.; Wang, L.; Meng, X.; Li, J.; Xiao, F.-S. ChemCatChem 2016, 8, 812.
[18] (a) Sun, Q.; He, H.; Gao, W.-Y.; Aguila, B.; Wojtas, L.; Dai, Z.; Li, J.; Chen, Y.-S.; Xiao, F.-S.; Ma, S. Nat. Commun. 2016, 7, 13300;
(b) Sun, Q.; Aguila, B.; Perman, J.; Butts, T.; Xiao, F.-S.; Ma, S. Chem 2018, 4, 1726.
[19] Su, B.; Tian, Y.; Jiang, L. J. Am. Chem. Soc. 2016, 138, 1727.
[20] Zhang, Y.; Wei, S.; Liu, F.; Du, Y.; Liu, S.; Ji, Y.; Yokoi, T.; Tatsumi, T.; Xiao, F.-S. Nano Today 2009, 4, 135.
[21] Sun, Q.; Aguila, B.; Verma, G.; Liu, X.; Dai, Z.; Deng, F.; Meng, X.; Xiao, F.-S.; Ma, S. Chem 2016, 1, 628.
[22] Sun, Q.; Jin, Y.; Zhu, L.; Wang, L.; Meng, X.; Xiao, F.-S. Nano Today 2013, 8, 342.
[23] (a) Liu, F.; Meng, X.; Zhang, Y.; Ren, L.; Nawaz, F.; Xiao, F.-S. J. Catal. 2010, 271, 52;
(b) Liu, F.; Kong, W.; Qi, C.; Zhu, L.; Xiao, F.-S. ACS Catal. 2012, 2, 565;
(c) Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F.-S. J. Am. Chem. Soc. 2012, 134, 16948;
(d) Liu, F.; Huang, K.; Zheng, A.; Xiao, F.-S.; Dai, S. ACS Catal. 2018, 8, 372.
[24] Wang, L.; Wang, H.; Liu, F.; Zheng, A.; Zhang, J.; Sun, Q.; Lewis, J. P.; Zhu, L. F.; Meng, X.; Xiao, F.-S. ChemSusChem 2014, 7, 402.
[25] Sun, Q.; Hu, K.; Leng, K.; Yi, X.; Aguila, B.; Sun, Y.; Zheng, A.; Meng, X.; Ma, S.; Xiao, F.-S. J. Mater. Chem. A 2018, 6, 18712.
[26] (a) Liu, F.; Li, W.; Sun, Q.; Zhu, L.; Meng, X.; Guo, Y.-H.; Xiao, F.-S. ChemSusChem 2011, 4, 1059;
(b) Zhang, Y.-L.; Liu, S.; Liu, S.; Liu, F.; Zhang, H.; He, Y.; Xiao, F.-S. Cat. Commun. 2011, 12, 1212.
Outlines

/