Article

Investigation on Oxygen Reduction Reaction Mechanism on S Doped Fe-NC lsolated Single Atoms Catalyst

  • Lu Xiaoqing ,
  • Cao Shoufu ,
  • Wei Xiaofei ,
  • Li Shaoren ,
  • Wei Shuxian
Expand
  • School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China

Received date: 2020-06-10

  Online published: 2020-07-28

Supported by

Project supported by the Major Scientific and Technological Projects of China National Petroleum Corporation (ZD2019-184-001) and Fundamental Research Funds for the Central Universities (18CX02042A and 18CX05011A).

Abstract

Heteratom-doped Fe-NC catalyst is promising for highly efficiently oxygen reduction reaction (ORR). In this work, density functional theory with the Vienna Ab initio Simulation Package (VASP) has been employed to systematically study the electronic structure regulation mechanism and oxygen reduction promoting mechanism on sulfur atom doped Fe-NC catalyst. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional within a generalized gradient approximation (GGA) was used in this work. The computataional hydrogen electron model was used to calculate the changes in Gibbs free energy. To consider the influence of S doping proportion, we build FeNSx models with 1~4 S atoms. The thermodynamic stability of catalysts was firstly considered based on formation energy, following by electronic structure analysis through Bader charge analysis and densities of states. Then, the oxygen adsorption ability was considered based on oxygen adsorption configurations and energies analyses. At last, reaction overpotentials were calculated based on computational hydrogen electrode model to study activity of catalytic sites. The results show that the catalyst doped with few sulfur atoms around the active sites of FeN4 could remain stable. Three possible ORR promoting mechanisms of S atoms doping were investigated. Firstly, the doping of sulfur atoms would reduce the band gap of the catalyst, thus improving the conductivity of the catalyst, which is beneficial to electrocatalytic oxygen reduction reactions. Secondly, the doping of a small amount of S atoms can improve the affinity between oxygen and the catalysts, which is also important for oxygen reduction reaction. At last, the introduction of four S atoms in the system would reduce the overpotential of ORR, thus improving the activity of the active sites to catalyze the oxygen reduction reaction. Our results predict that few S atoms doping would improve ORR performance of the Fe-NC catalyst through reducing band gap, improving ability to adsorb oxygen, and improving catalytic activity of FeN4 site. This work may give a new insight into regulation rules of heteratom doping on single atom catalysts based on carbon materials.

Cite this article

Lu Xiaoqing , Cao Shoufu , Wei Xiaofei , Li Shaoren , Wei Shuxian . Investigation on Oxygen Reduction Reaction Mechanism on S Doped Fe-NC lsolated Single Atoms Catalyst[J]. Acta Chimica Sinica, 2020 , 78(9) : 1001 -1006 . DOI: 10.6023/A20060223

References

[1] Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Gttle, A. J.; Koper, M. T. M. Nature Energy 2019, 732.
[2] Zhao, W. C; Xu, X.; Bai, H.; Zhang, J.; Lu, S.; Xiang, Y. Acta Chim. Sinica 2020, 78, 69(in Chinese). (赵韦辰, 徐鑫, 白慧娟, 张劲, 卢善富, 相艳, 化学学报, 2020, 78, 69.)
[3] Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat. Chem. 2011, 3, 546.
[4] Li, J.; Feng, X.; Wei, Z. D. J. Electrochem. 2018, 24, 22(in Chinese). (李静, 冯欣, 魏子栋, 电化学, 2018, 24, 22.)
[5] Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433.
[6] Dai, L.; Xue, Y.; Qu, L.; Choi, H. J.; Baek, J. B. Chem. Rev. 2015, 115, 4823.
[7] Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang, W.; Sougrati, M. T.; Jaouen, F.; Mukerjee, S. Nat. Chem. 2015, 6, 7343.
[8] (a) Huang, W. J.; Zhang, H. Y.; Hu, S.-Z.; Niu, D. F.; Zhang, X.-S. Acta Chim. Sinica 2018, 76, 723(in Chinese). (黄文姣, 张浩宇, 胡硕真, 钮东方, 张新胜, 化学学报, 2018, 76, 723);
(b) Zhang, Z. Q.; Ge, C. X.; Chen, Y. G.; Wu, Q.; Hu, Z. Acta Chim. Sinica 2019, 77, 60(in Chinese). (张志琦, 葛承宣, 陈玉刚, 吴强, 胡征, 化学学报, 2019, 77, 60);
(c) Wang, Y. L.; Wang, M. J.; Li, J.; Wei, Z. D. Acta Chim. Sinica 2019, 77, 84(in Chinese). (王艺霖, 王敏杰, 李静, 魏子栋, 化学学报, 2019, 77, 84).
[9] Chang, Z. W.; Meng, F. L.; Zhong, H. X.; Zhang, X. B. Chin. J. Chem. 2018, 36, 287.
[10] Li, Q.; Chen, W.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L.; Zheng, X.; Yan, W.; Cheong, W. C.; Shen, R.; Fu, N.; Gu, L.; Zhuang, Z.; Chen, C.; Wang, D.; Peng, Q.; Li, J.; Li, Y. Adv. Mater. 2018, 30, e1800588.
[11] Chen, P.; Zhou, T.; Xing, L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.; Yan, W.; Chu, W.; Wu, C. Angew. Chem., Int. Ed. 2017, 129, 625.
[12] Hu, K.; Tao, L.; Liu, D.; Huo, J.; Wang, S. ACS Appl. Mater. Interfaces 2016, 8, 30.
[13] Naveen, M. H.; Shim, K.; Hossain, M. S. A.; Kim, J. H.; Shim, Y. B. Adv. Energy Mater. 2017, 7, 1602002.
[14] Ji, L.; Yan, J.; Jaroniec, M.; Shi, Z. Q. Angew. Chem., Int. Ed. 2012, 51, 11808.
[15] Shen, H.; Gracia-Espino, E.; Ma, J.; Zang, K.; Luo, J.; Wang, L.; Gao, S.; Mamat, X.; Hu, G.; Wagberg, T. Angew. Chem., Int. Ed. 2017, 129, 13988.
[16] (a) Lei, C.; Chen, H.; Cao, J.; Yang, J.; Qiu, M.; Xia, Y.; Yuan, C.; Yang, B.; Li, Z.; Zhang, X.; Lei, L.; Abbott, J.; Zhong, Y.; Xia, X.; Wu, G.; He, Q.; Hou, Y. Adv. Energy Mater. 2018, 8, 1801912;
(b) Lin, Y.; Liu, P.; Velasco, E.; Yao, G.; Tian, Z.; Zhang, L.; Chen, L. Adv. Mater. 2019, 31, e1808193;
(c) Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. J. Am. Chem. Soc. 2019, 141, 6254;
(d) Wagner, S.; Auerbach, H.; Tait, C. E.; Martinaiou, I.; Kumar, S. C. N.; Kubel, C.; Sergeev, I.; Wille, H. C.; Behrends, J.; Wolny, J. A.; Schunemann, V.; Kramm, U. I. Angew. Chem., Int. Ed. 2019, 58, 10486.
[17] Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886.
[18] Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
[19] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[20] Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys. 2014, 140, 084106.
[21] Guo, C.; Wei, S.; Zhou, S.; Zhang, T.; Wang, Z.; Ng, S. P.; Lu, X.; Wu, C. M. L.; Guo, W. J. ACS Appl. Mater. Interfaces 2017, 9, 26107.
[22] Chen, Z.; Zhao, J.; Cabrera, C. R.; Chen, Z. F. Small Methods 2019, 3, 1800368.
Outlines

/