Review

Construction and Development of Tumor Microenvironment Stimulus-Responsive Upconversion Photodynamic Diagnosis and Treatment System

  • Yan Tao ,
  • Liu Zhenhua ,
  • Song Xinyue ,
  • Zhang Shusheng
Expand
  • a Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China;
    b College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014

Received date: 2020-04-29

  Online published: 2020-08-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21775063), the Nature Science Foundation of Shandong Province (No. ZR2018ZC0231) and the Key Research Plan of Shandong Province (No. 2017GGX40110).

Abstract

Photodynamic therapy (PDT) is a new type of non-invasive tumor therapy, which has the advantages of less trauma and toxicity, good selectivity, no drug resistance and repeatable treatment. Thus, PDT has achieved remarkable results in the treatment of cancer. In order to increase its depth of tissue penetration, researchers proposed to build novel PDT nano-theranostic systems based on upconversion nanoparticles (referred as upconversion photodynamic nanotheranostic system). Based on the luminescence resonance energy transfer process, upconversion photodynamic nanotheranostic systems use the emitted fluorescence of upconversion nanoparticles which is excited by the near-infrared laser to further excite the loaded photosensitizer, thus it is advantageous to the treatment of deep tumors. Via the multi-functional structure design, the newly developed upconversion photodynamic nanotheranostic agent could achieve the targeted transportation, imaging diagnosis and stimulation response for the achievement of on-demand treatment, which is the trend for the development of nanomedicine in the future. At present, researchers pay more and more attention to the construction of tumor microenvironment responsive nanotheranostic system, in order to improve the targeting to the tumor section, improve the PDT efficacy, and reduce the toxicity to the surrounding normal tissues. This work mainly discusses the construction and development of upconversion nanotheranostic systems based on the stimulation of pH, enzyme and hydrogen peroxide. In addition, we prospect its development in the future.

Cite this article

Yan Tao , Liu Zhenhua , Song Xinyue , Zhang Shusheng . Construction and Development of Tumor Microenvironment Stimulus-Responsive Upconversion Photodynamic Diagnosis and Treatment System[J]. Acta Chimica Sinica, 2020 , 78(7) : 657 -669 . DOI: 10.6023/A20040132

References

[1] Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Chem. Soc. Rev. 2015, 44, 1302.
[2] Liu, J. L.; Liu, Y.; Liu, Q.; Li, C. Y.; Sun, L. N.; Li, F. Y. J. Am. Chem. Soc. 2011, 133, 15276.
[3] Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Adv. Funct. Mater. 2009, 19, 853.
[4] Yi, G. S.; Peng, Y. F.; Gao, Z. Q, Chem. Mater. 2011, 23, 2729.
[5] Auzel, F. E. P. IEEE. 1973, 61, 758.
[6] Yi, G. S.; Chow, G. M. Adv. Funct. Mater. 2006, 16, 2324.
[7] Liu, C. H.; Wang, H.; Li, X.; Chen, D. P. J. Mater. Chem. 2009, 19, 3546.
[8] Zijlmans, H. J. M. A. A.; Bonnet, J.; Burton, J.; Kardos, K.; Vail, T.; Niedbala, R. S.; Tanke, H. J. Anal. Biochem. 1999, 267, 30.
[9] Chen, C.; Sun, L. D.; Li, Z. X.; Li, L. L.; Zhang, J.; Zhang, Y. W.; Yan, C. H. Langmuir 2010, 26, 8797.
[10] Wang, Y. F.; Li, L. M.; Xu, T. Y.; Bai, Y. X.; Xie, R.; Yang, P. P. J. Mod. Oncol. 2017, 25, 1489(in Chinese). (王玉凤, 李隆敏, 许桐瑛, 白玉贤, 谢蕊, 杨飘萍, 现代肿瘤医学, 2017, 25, 1489.)
[11] Pan, Y. S.; Ding, J. Guangzhou Chem. Ind. 2016, 12, 33(in Chinese). (潘育松, 丁洁, 广州化工, 2016, 12, 33.)
[12] Qian, H. S.; Guo, H, C.; Ho, P. C. L.; Mahendran, R.; Yong, Z. Small 2009, 5, 2285.
[13] Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. J. Am. Chem. Soc. 2007, 129, 4526.
[14] Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Biomaterials 2011, 32, 6145.
[15] Hamblin, M. R. Dalton Trans. 2018, 47, 8571.
[16] Cheng, F.; Huang, L. T.; Wang, H. H.; Liu, Y. J.; Kandhadi, J.; Wang, H.; Ji, L. N.; Liu, H. Y. Chin. J. Chem. 2017, 35, 86.
[17] Li, M. L.; Peng, X. J. Acta Chim. Sinica 2016, 74, 959(in Chinese). (李明乐, 彭孝军, 化学学报, 2016, 74, 959.)
[18] Feng, T.; Xue, Z. B.; Yin, J. J.; Jiang, X.; Feng, Y. Q.; Meng, S. X. Chin. J. Org. Chem. 2019, 39, 1891(in Chinese). (冯彤, 薛中博, 尹娟娟, 蒋旭, 冯亚青, 孟舒献, 有机化学, 2019, 39, 1891.)
[19] Feng, L. L.; He, F.; Liu, B.; Yang, G. X.; Gai, S. L.; Yang, P. P.; Li, C. X.; Dai, Y. L.; Lv, R. C.; Lin, J. Chem. Mater. 2016, 28, 7935.
[20] Chan, M. H.; Chen, C. W.; Lee, I. J.; Chan, Y. C.; Tu, D. T.; Hsiao, M.; Chen, C. H.; Chen, X. Y.; Liu, R. S. Inorg. Chem. 2016, 55, 10267.
[21] Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[22] Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L.; Yan, C. H. J. Am. Chem. Soc. 2017, 139, 13804.
[23] Feng, J.; Xu, Z.; Dong, P.; Yu, W. Q.; Liu, F.; Jiang, Q. Y.; Wang, F.; Liu, X. Q. J. Mater. Chem. B 2019, 7, 994.
[24] Yao, J. Z.; Liu, Y.; Wang, J. W.; Jiang, Q.; She, D. J.; Guo, H. S.; Sun, N. R.; Pang, Z. Q.; Deng, C. H.; Yang, W. L.; Shen, S. Biomaterials 2019, 195, 51.
[25] Yue, Z. H.; Hong, T. T.; Song, X. Y.; Wang, Z. H. Chem. Commun. 2018, 54, 10618.
[26] Song, X. Y.; Yue, Z. H.; Hong, T. T.; Wang, Z. H.; Zhang, S. S. Anal. Chem. 2019, 91, 8549.
[27] Liu, K.; Liu, X. M.; Zeng, Q. H.; Zhang, Y. L.; Tu, L. P.; Liu, T.; Kong, X. G.; Wang, Y. H.; Cao, F.; Lambrechts, S. A. G. ACS Nano 2012, 6, 4054.
[28] Kumar, B.; Murali, A.; Bharath, A. B.; Giri, S. Nanotechnology 2019, 30, 315102.
[29] Kostiv, U.; Patsula, V.; Noculak, A.; Podhorodecki, A.; Vetvicka, D.; Pouckova, P.; Sedlakova, Z.; Horak, D. ChemMedChem 2017, 12, 2066.
[30] Feng, Y. S.; Wu, Y. N.; Zuo, J.; Tu, L. P.; Que, I.; Chang, Y. L.; Cruz, L. J.; Chan, A.; Zhang, H. Biomaterials 2019, 201, 33.
[31] Abouelmagd, S. A.; Hyun, H.; Yeo, Y. Expert Opin. Drug Del. 2014, 11, 1601.
[32] Ju, M. J.; Pang, J. D.; Xu, L. G. Chin. J. Chem. 2017, 35, 1445.
[33] Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. J. Am. Chem. Soc. 2011, 133, 17560.
[34] Lee, E. S.; Gao, Z. G.; Bae, Y. H. J. Control. Release 2008, 132, 164.
[35] Wang, Y. H.; Song, S. Y.; Zhang, S. T.; Zhang, H. J. Nano Today 2019, 25, 38.
[36] Wang, C.; Cheng, L.; Liu, Y. M.; Wang, X. J.; Ma, X. X.; Deng, Z. Y.; Li, Y. G.; Liu, Z. Adv. Funct. Mater. 2013, 23, 3077.
[37] Wang, S.; Zhang, L.; Dong, C. H.; Su, L.; Wang, H. J.; Chang, J. Chem. Commun. 2015, 51, 406.
[38] Guan, Y.; Lu, H. G.; Li, W.; Zheng, Y. D.; Jiang, Z.; Zou, J. L.; Gao, H. ACS Appl. Mater. Inter. 2017, 9, 26731.
[39] Li, F. Y.; Du, Y.; Liu, J. N.; Sun, H.; Wang, J.; Li, R. Q.; Kim, D.; Hyeon, T.; Ling, D. Adv. Mater. 2018, 30, 1802808.
[40] Juarez, A. V.; Sosa, L. d. V.; Paul, A. L. D.; Costa, A. P.; Farina, M.; Leal, R. B.; Torres, A. I.; Pons, P. J. Photoch. Photobio. B 2015, 153, 445.
[41] Liu, X. M.; Fan, Z. Q.; Zhang, L.; Jin, Z.; Yan, D. M.; Zhang, Y. L.; Li, X. D.; Tu, L. P.; Xue, B.; Chang, Y. L.; Zhang, H.; Kong, X. G. Biomaterials 2017, 144, 73.
[42] Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S. C.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B.; Wendt, M. D.; Zhang, H. C.; Fesik, S. W.; Rosenberg, S. H. Nature 2005, 435, 677.
[43] Liu, S. K.; Li, W. T.; Dong S. M.; Gai, S. L; Dong, Y. S.; Yang, D.; Dai, Y. L.; He, F.; Yang, P. P. ACS Appl. Mater. Inter. 2019, 11, 47659.
[44] Yu, Z. Z.; Ge, Y. G.; Sun, Q. Q.; Pan, W.; Wan, X. Y.; Li, N.; Tang, B. Chem. Sci. 2018, 9, 3563.
[45] Lee, G. Y.; Qian, W. P.; Wang, L. Y.; Wang, Y. A.; Staley, C. A.; Satpathy, M.; Nie, S. M.; Mao, H.; Yang, L. ACS Nano 2013, 7, 2078.
[46] Li, Y. Y.; Zhang, X. B.; Zhang, Y.; Zhang, Y.; He, Y. L.; Liu, Y.; Ju, H. X. ACS Appl. Mater. Inter. 2020, 12, 19313.
[47] Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X.; Wang, Y.; Liu, X. G.; Chen, H. B.; Gao, M. Y.; Chen, X. Y.; Yeow, E. K. L.; Liu, G.; Olivo, M.; Xing, B. G. Nat. Commun. 2016, 7, 10432.
[48] Dickinson, B. C.; Chang, C. J. Nat. Chem. Biol. 2011, 7, 504.
[49] Cai, H. J.; Shen, T. T.; Zhang, J.; Shan, C. F.; Jia, J. G.; Li, X.; Liu, W. S.; Tang, Y. J. Mater. Chem. B 2017, 5, 2390.
[50] Liang, S.; Sun, C. Q.; Yang, P. P.; Ma, P. A.; Huang, S. S.; Cheng, Z. Y.; Yu, X. F.; Lin, J. Biomaterials 2020, 240, 119850.
[51] Gu, T. X.; Cheng, L.; Gong, F.; Xu, J.; Li, X.; Han, G. R.; Liu, Z. ACS Appl. Mater. Inter. 2018, 10, 15494.
[52] Lin, J.; Ding, B. B.; Shao, S.; Xiao, H. H; Sun, C. Q.; Cai, X. C; Jiang, F.; Zhao, X. Y.; Ma, P. A. Nanoscale 2019, 11, 14654.
[53] Dong, S. M.; Xu, J. T.; Jia, T.; Xu, M. S.; Zhong, C. N.; Yang, G. X.; Li, J. R.; Yang, D.; He, F.; Gai, S. L.; Yang, P. P.; Lin, J. Chem. Sci. 2019, 10, 4259.
[54] Jia, T.; Xu, J. T.; Dong, S. M.; He, F.; Zhong, C. N.; Yang, G. X.; Bi, H. T.; Xu, M. S.; Hu, Y. K.; Yang, D.; Yang, P. P.; Lin, J. Chem. Sci. 2019, 10, 8618.
[55] Xu, J. T.; Han, W.; Yang, P. P.; Jia, T.; Dong, S. M.; Bi, H. T.; Gulzar, A.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Li, C. X. Adv. Funct. Mater. 2018, 28, 1803804.
[56] Zhao, L.; Ge, X. Q.; Zhao, H. J.; Shi, L. Y.; Capobianco, J.; Jin, D. Y.; Sun, L. N. ACS Applied Nano Materials 2018, 1, 1648.
[57] Yuan, J.; Cen, Y.; Kong, X. J.; Wu, S.; Liu, C. L.; Yu, R. Q.; Chu, X. ACS Appl. Mater. Inter. 2015, 7, 10548.
[58] Ai, X. Z.; Hu, M.; Wang, Z. M.; Lyu, L.; Zhang, W. M.; Li, J.; Yang, H. H.; Lin, J.; Xing, B. G. Bioconjugate Chem. 2018, 29, 928.
[59] Sun, Q. Q.; He, F.; Sum, C. Q.; Wang, X. X.; Li, C. X.; Xu, J. T.; Yang, D.; Bi, H. T.; Gia, S. L.; Yang, P. P. ACS Appl. Mater. Inter. 2018, 10, 33901.
[60] Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. J. Am. Chem. Soc. 2011, 133, 20168.
[61] Fan, W. P.; Bu, W. B.; Shen, B.; He Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Adv. Mater. 2015, 27, 4155.
[62] Feng, L. L.; He, F.; Dai, Y. L.; Gai, S. L.; Zhong, C. N.; Li, C. X.; Yang, P. P. Biomater. Sci-UK. 2017, 5, 2456.
[63] Gu, T. X.; Cheng, L.; Gong, F.; Xu, J.; Li, X.; Liu, Z. ACS Appl. Mater. Inter. 2018, 10, 15494.
[64] Xu, J. T.; He, F.; Cheng, Z. Y.; Lv, R. C.; Dai, Y. L.; Gulzar, A.; Liu, B.; Bi, H. T.; Yang, D.; Gai, S. L.; Yang, P. P.; Lin, J. Chem. Mater. 2017, 29, 7615.
[65] Lv, R. C.; Wang, Y. X.; Liu, J.; Feng, M.; Yang, F.; Jiang, X.; Tian, J. ACS Biomater. Sci. Eng. 2019, 5, 3100.
[66] Zhang, C.; Chen, W. H.; Liu, L. H.; Qiu, W. X.; Yu, W. Y.; Zhang, X. Z. Adv. Funct. Mater. 2017, 27, 1700626.
[67] Jiang, W.; Zhang, C.; Ahmed, A.; Zhao, Y. L.; Deng, Y.; Ding, Y.; Cai, J. F.; Hu, Y. Adv. Healthc. Mater. 2019, 8, 1900972.
[68] Hu, P.; Wu, T.; Fan, W. P.; Chen, L.; Liu, Y. Y.; Ni, D. L.; Bu, W. B.; Shi, J. L. Biomaterials 2017, 141, 86.
[69] Bi, H. T.; Dai, Y. L.; Yang, P. P.; Xu, J. T.; Yang, D.; Gai, S. L.; He, F.; Liu, B.; Zhong, C. N.; An, G. H.; Lin, J. Small 2018, 14, 1703809.
Outlines

/