Review

Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion

  • Wang Wenbin ,
  • Wen Qunlei ,
  • Liu Youwen ,
  • Zhai Tianyou
Expand
  • State Key Laboratory of Material Processing and Die&Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2020-06-24

  Online published: 2020-08-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21805102, 21825103, 51727809) and the Hubei Provincial Natural Science Foundation of China (No. 2019CFA002).

Abstract

Electrocatalytic biomass conversion, which utilizing the electrical energy generated by intermittent energy, drive biomass into high value-added organic chemicals, and usually can be coupled with water splitting for the production of high-purity hydrogen. It has the potential to significantly decrease fossil fuel consumption, optimize energy structure and solve environmental issues. However, because biomass possess multiple groups and its conversion involves multiple electrons, electrocatalytic biomass conversion suffer from low conversion efficiency, bad selectivity and poor stability. Surface and interface chemistry engineering, such as regulating intrinsic structure, generating vacancies, introducing heteroatom, and constructing synergistic interface, can design and modify two-dimensional electrocatalysts to optimize their electronic structure and geometric structure, and effectively improve the electrocatalytic efficiency, selectivity and stability. This review provides an overview of recent advances about the role of surface and interface chemistry played on electrocatalytic biomass conversion of two-dimensional materials. In addition, the authors also give some perspectives on the challenges and prospects in this field.

Cite this article

Wang Wenbin , Wen Qunlei , Liu Youwen , Zhai Tianyou . Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion[J]. Acta Chimica Sinica, 2020 , 78(11) : 1185 -1199 . DOI: 10.6023/A20060265

References

[1] Luna, P. D.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506.
[2] Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998.
[3] Du, L.; Shao, Y.; Sun, J.; Yin, G.; Du, C.; Wang, Y. Catal. Sci. Technol. 2018, 8, 3216.
[4] Li, Z.; Luo, Y.; Jiang, Z.; Fang, Q.; Hu, C. Chin. J. Chem. 2020, 38, 178.
[5] Li, C.; Zhang, Q.; Fu, Y. Acta Chim. Sinica. 2018, 76, 501. (李翠, 张琪, 傅尧, 化学学报, 2018, 76, 501.)
[6] Liu, R. Y.; Bae, M.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 1627.
[7] Sun, J.; Wang, Y. ACS Catal. 2014, 4, 1078.
[8] Chen, Y.; Liu, H.; Cheng, Y.; Xie, Q. Acta Chim. Sinica. 2020, 78, 330. (陈莹莹, 刘欢, 程彦, 谢青季,化学学报, 2020, 78, 330.)
[9] Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica. 2020, 78, 289. (廖港, 吴勇杰, 史炳锋,化学学报, 2020, 78, 289.)
[10] Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F.; Han, G.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. Chem 2018, 4, 637.
[11] Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37, 547.
[12] You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639.
[13] Chi, J.; Yu, H. Chin. J. Catal. 2018, 39, 390. (迟军, 俞红梅, 催化学报, 2018, 39, 390.)
[14] Cheng, P.-F.; Feng, T.; Liu, Z.-W.; Wu, D.-Y.; Yang, J. Chin. J. Catal. 2019, 40, 1147. (程鹏飞, 冯婷, 刘紫薇, 吴德垚, 杨静, 催化学报, 2019, 40, 1147.)
[15] Hang-shuo, L.; Xiao-bo, H.; Feng-xiang, Y.; Guo-ru, L. J. Electrochem. 2020, 26, 136. (陆杭烁, 何小波, 银凤翔, 李国儒, 电化学, 2020, 26, 136.)
[16] You, H.; Zhuo, Z.; Lu, X.; Liu, Y.; Guo, Y.; Wang, W.; Yang, H.; Wu, X.; Li, H.; Zhai, T. CCS Chem. 2019, 1, 396.
[17] Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K. Nat. Mater. 2016, 16, 70.
[18] Zhang, P.; Sun, L. Chin. J. Chem. 2020, 38, 996.
[19] Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Chem 2018, 4, 1263.
[20] Liu, Y.; Hua, X.; Xiao, C.; Zhou, T.; Huang, P.; Guo, Z.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2016, 138, 5087.
[21] Zhu, W.; Ren, M.; Hu, N.; Zhang, W.; Luo, Z.; Wang, R.; Wang, J.; Huang, L.; Suo, Y.; Wang, J. ACS Sustainable Chem. Eng. 2018, 6, 5011.
[22] Li, Y.; Lu, J.; Wang, X.; Zhang, H.; Wu, X.; Zhang, K. H. L.; Ye, J.; Zhan, D. ChemCatChem 2019, 11, 2277.
[23] Ojha, K.; Farber, E. M.; Burshtein, T. Y.; Eisenberg, D. Angew. Chem. Int. Ed. 2018, 57, 17168.
[24] Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z.; Lin, Z.; Xiang, B.; Liu, X.; Zhao, K.; Liao, X.; Yang, W.; Cheng, Y.-B.; Mai, L. Adv. Energy Mater. 2019, 9, 1900390.
[25] Yang, W.; Yang, X.; Jia, J.; Hou, C.; Gao, H.; Mao, Y.; Wang, C.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 244, 1096.
[26] Yang, W.; Yang, X.; Hou, C.; Li, B.; Gao, H.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 259, 118020.
[27] Wang, W.; Zhu, Y.-B.; Wen, Q.; Wang, Y.; Xia, J.; Li, C.; Chen, M.-W.; Liu, Y.; Li, H.; Wu, H.-A.; Zhai, T. Adv. Mater. 2019, 31, 1900528.
[28] Zhu, X.; Dou, X.; Dai, J.; An, X.; Guo, Y.; Zhang, L.; Tao, S.; Zhao, J.; Chu, W.; Zeng, X. C.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2016, 55, 12465.
[29] Li, K.; Sun, Y. Chem. Eur. J. 2018, 24, 18258.
[30] Chen, L.; Shi, J. J. Mater. Chem. A. 2018, 6, 13538.
[31] Yu, Z.-Y.; Lang, C.-C.; Gao, M.-R.; Chen, Y.; Fu, Q.-Q.; Duan, Y.; Yu, S.-H. Energy Environ. Sci. 2018, 11, 1890.
[32] Boggs, B. K.; King, R. L.; Botte, G. G. Chem. Commun. 2009, 32, 4859.
[33] Chen, S.; Duan, J.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2016, 55, 3804.
[34] Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T. Adv. Energy Mater. 2018, 8, 1801775.
[35] Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842.
[36] Wu, L.-S.; Dai, H.-B.; Wen, X.-P.; Wang, P. ChemElectroChem 2017, 4, 1944.
[37] Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. New J. Chem. 2017, 41, 4754.
[38] Wang, Y.; Chen, Z.; Wu, H.; Xiao, F.; Cao, E.; Du, S.; Wu, Y.; Ren, Z. ACS Sustainable Chem. Eng. 2018, 6, 15727.
[39] Liu, M.; Zhang, R.; Zhang, L.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R.; Sun, X. Inorg. Chem. Front. 2017, 4, 420.
[40] Sun, H.; Ye, Y.; Liu, J.; Tian, Z.; Cai, Y.; Li, P.; Liang, C. Chem. Commun. 2018, 54, 1563.
[41] Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. ACS Catal. 2017, 8, 526.
[42] Fu, W.; Li, Y.; Liang, C. Acta Chim. Sinica. 2019, 77, 559. (付雯雯, 李严, 梁长海, 化学学报, 2019, 77, 559.)
[43] Wu, K.; Zhou, Y.; Ma, X.; Ding, C.; Cai, W. Acta Chim. Sinica. 2018, 76, 292. (吴匡衡, 周亚威, 马宪印, 丁辰, 蔡文斌, 化学学报, 2018, 76, 292.)
[44] Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017, 19, 1958.
[45] Bott-Neto, J. L.; Martins, T. S.; Machado, S. r. A. S.; Ticianelli, E. A. ACS Appl. Mater. Interfaces 2019, 11, 30810.
[46] You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564.
[47] Yin, Z.; Zheng, Y.; Wang, H.; Li, J.; Zhu, Q.; Wang, Y.; Ma, N.; Hu, G.; He, B.; Knop-Gericke, A.; Schlogl, R.; Ma, D. ACS Nano 2017, 11, 12365.
[48] Zheng, J.; Chen, X.; Zhong, X.; Li, S.; Liu, T.; Zhuang, G.; Li, X.; Deng, S.; Mei, D.; Wang, J.-G. Adv. Funct. Mater. 2017, 27, 1704169.
[49] Zhang, X.; Han, M.; Liu, G.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. App. Catal. B:Environ. 2019, 244, 899.
[50] Nam, D.-H.; Taitt, B. J.; Choi, K.-S. ACS Catal. 2018, 8, 1197.
[51] Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533.
[52] Du, P.; Zhang, J.; Liu, Y.; Huang, M. Electrochem. Commun. 2017, 83, 11.
[53] Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S.; Huber, G. W.; Yu, H. Q. Nat. Commun. 2020, 11, 265.
[54] Miao, J.; Teng, X.; Zhang, R.; Guo, P.; Chen, Y.; Zhou, X.; Wang, H.; Sun, X.; Zhang, L. App. Catal. B:Environ. 2020, 263, 118109.
[55] Ding, Y.; Miao, B.-Q.; Li, S.-N.; Jiang, Y.-C.; Liu, Y.-Y.; Yao, H.-C.; Chen, Y. App. Catal. B:Environ. 2020, 268, 118393.
[56] Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Angew. Chem. Int. Ed. 2018, 57, 13163.
[57] Lum, Y.; Huang, J. E.; Wang, Z.; Luo, M.; Nam, D.-H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y.; Dinh, C.-T.; Li, J.; Zhuang, T.-T.; Li, F.; Sham, T.-K.; Sinton, D.; Sargent, E. H. Nat. Catal. 2020, 3, 14.
[58] Zhou, Y.; Gao, Y.; Zhong, X.; Jiang, W.; Liang, Y.; Niu, P.; Li, M.; Zhuang, G.; Li, X.; Wang, J. Adv. Funct. Mater. 2019, 29, 1807651.
[59] Zhang, B.; Huang, C.; Huang, Y.; Liu, C.; Chong, X. Natl. Sci. Rev. 2020, 7, 285.
[60] Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y. App. Catal. B:Environ. 2020, 265, 118543.
[61] Dai, L.; Qin, Q.; Zhao, X.; Xu, C.; Hu, C.; Mo, S.; Wang, Y. O.; Lin, S.; Tang, Z.; Zheng, N. ACS Cent. Sci. 2016, 2, 538.
[62] Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 15895.
[63] Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335.
[64] Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423. (代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40, 1423.)
[65] Li, Y.; Jiang, Y.; Jiang, P.; Du, S.; Jiang, J.; Leng, Y. Acta Chim. Sinica. 2019, 77, 66. (李月, 姜宇晨, 蒋平平, 杜盛郁, 姜就胜, 冷炎, 化学学报, 2019, 77, 66.)
[66] Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica. 2020, 78, 256. (翟亚丽, 许文娟, 孟祥茹, 侯红卫, 化学学报, 2020, 78, 256.)
[67] Zhang, Y.; Duan, H.-X.; Wang, Y.-Q. Chin. J. Org. Chem. 2020, 40, 1514. (张永娜, 段慧欣, 汪游清, 有机化学, 2020, 40,1514.)
[68] Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; Arquer, F. P. G. d.; Dinh, C. T.; Fan, F.; Yuan, M.; Yassitepe, E.; Chen, N.; Regier, T.; Liu, P.; Li, Y.; Luna, P. D.; Janmohamed, A.; Xin, H. L.; Yang, H.; Vojvodic, A.; Sargent, E. H. Science 2016, 352, 333.
[69] Tan, C.; Luo, Z.; Chaturvedi, A.; Cai, Y.; Du, Y.; Gong, Y.; Huang, Y.; Lai, Z.; Zhang, X.; Zheng, L.; Qi, X.; Goh, M. H.; Wang, J.; Han, S.; Wu, X. J.; Gu, L.; Kloc, C.; Zhang, H. Adv. Mater. 2018, 30, 1705509.
[70] Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. J. Am. Chem. Soc. 2015, 137, 3638.
[71] Zhang, J. Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B. Y. Angew. Chem. Int. Ed. 2018, 57, 7649.
[72] Gao, Y.; Wang, Q.; He, T.; Zhang, J.-Y.; Sun, H.; Zhao, B.; Xia, B. Y.; Yan, Y.; Chen, Y. Inorg. Chem. Front. 2019, 6, 2686.
[73] Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546.
[74] Jia, X.; Zhang, X.; Zhao, J.; Zhao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Shi, R.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. J. Energy Chem. 2019, 34, 57.
[75] Dou, S.; Tao, L.; Wang, R.; El Hankari, S.; Chen, R.; Wang, S. Adv. Mater. 2018, 30, 1705850.
[76] Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746.
[77] Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S. J. Am. Chem. Soc. 2016, 138, 7965.
[78] He, Q.; Wan, Y.; Jiang, H.; Pan, Z.; Wu, C.; Wang, M.; Wu, X.; Ye, B.; Ajayan, P. M.; Song, L. ACS Energy Lett. 2018, 3, 1373.
[79] Zhang, L.; Wang, L.; Lin, H.; Liu, Y.; Ye, J.; Wen, Y.; Chen, A.; Wang, L.; Ni, F.; Zhou, Z.; Sun, S.; Li, Y.; Zhang, B.; Peng, H. Angew. Chem. Int. Ed. 2019, 58, 16820.
[80] Zhang, X.; Zhao, Y.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. Adv. Energy Mater. 2019, 9, 1900881.
[81] Wang, W.; Wang, Y.; Yang, R.; Wen, Q.; Liu, Y.; Jiang, Z.; Li, H.; Zhai, T. Angew. Chem. Int. Ed. 2020, 59, 16974.
[82] Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I. N.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2018, 8, 1703585.
[83] Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P.; Duan, Y.; Ma, T.; Zheng, X. S.; Zhu, J. F.; Wang, H. J.; Gao, M. R.; Yu, S. H. J. Am. Chem. Soc. 2020, 142, 6400.
[84] Du, C. F.; Sun, X.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y.; Li, S.; Liu, X.; Yan, Q. InfoMat. 2020, 2, 950.
[85] Wu, Y.; Liu, X.; Han, D.; Song, X.; Shi, L.; Song, Y.; Niu, S.; Xie, Y.; Cai, J.; Wu, S.; Kang, J.; Zhou, J.; Chen, Z.; Zheng, X.; Xiao, X.; Wang, G. Nat.Commun. 2018, 9, 1425.
[86] Dong, B.; Li, W.; Huang, X.; Ali, Z.; Zhang, T.; Yang, Z.; Hou, Y. Nano Energy 2019, 55, 37.
[87] Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. Adv. Energy Mater. 2017, 7, 1700020.
[88] Dai, M.; Wang, J.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y. Acta Chim. Sinica. 2020, 78, 355. (代迷迷, 王健, 李麟阁, 王琪, 刘美男, 张跃钢, 化学学报, 2020, 78, 355.)
[89] Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Adv. Funct. Mater. 2020, 30, 2000556.
[90] Huang, W.; Ma, X. Y.; Wang, H.; Feng, R.; Zhou, J.; Duchesne, P. N.; Zhang, P.; Chen, F.; Han, N.; Zhao, F.; Zhou, J.; Cai, W. B.; Li, Y. Adv. Mater. 2017, 29, 1703057.
[91] Han, Y.; Li, P.; Liu, J.; Wu, S.; Ye, Y.; Tian, Z.; Liang, C. Sci. Rep. 2018, 8, 1359.
[92] Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M.; Zhong, J.; Jin, C.; Li, Y.; Lee, S. T.; Dai, H. Nat. Commun. 2015, 6, 10035.
[93] Yue, X.; Li, L.; Li, P.; Luo, C.; Pu, M.; Yang, Z.; Lei, M. Chin. J. Chem. 2019, 37, 883.
Outlines

/