Review

Advances in Analytical Methodology of Prostate Cancer Markers

  • Ma Qiulin ,
  • Feng Nan ,
  • Ju Huangxian
Expand
  • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Received date: 2020-06-22

  Online published: 2020-08-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741).

Abstract

The detection of tumor markers plays an important role in the screening, early diagnosis and treatment of high-risk cancer patients. Prostatic cancer is one of the most common malignancies of the male genitourinary system, and has an increasing trend in recent years. Its morbidity is generally influenced by region and ethnicity. The common clinical markers of prostate cancer include prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA), alpha-formyl kievase A mesozyme (AMACR, P504S), prostate-acid phosphatase (PAP), and calcium phosphatidyl binding protein 3 (ANXA3). Most of these markers are composed of proteins or enzymes, which are produced by normal or cancerous prostate cells. Of these, prostate-specific antigen (PSA) and prostate-acid phosphatase (PAP) are considered to be the most meaningful markers of the prostatic cancer. Detection of PSA is widely used in the early detection and monitoring of prostate cancer patients, while analysis of PAP is often used to detect advanced prostate cancer metastases and evaluate the therapeutic effect. Therefore, the analysis of PSA and PAP in the human serum is of great significance for the monitoring of disease status in clinical diagnosis and treatment. In this review the recent advances in the methodological study for detection of prostate cancer markers are reviewed along with the description of their structures and biological functions. The detection technologies of prostate-specific antigen and prostate acid phosphatase are emphatically introduced, which mainly contain colorimetric techniques, electrochemical methods, fluorescence methods and surface resonance plasmon techniques. On the basis of summarizing the research progress in this field in recent decades, the future development of prostate cancer marker analysis is prospected. This review is expected to provide a useful guidance for the study of prostate cancer markers.

Cite this article

Ma Qiulin , Feng Nan , Ju Huangxian . Advances in Analytical Methodology of Prostate Cancer Markers[J]. Acta Chimica Sinica, 2020 , 78(11) : 1213 -1222 . DOI: 10.6023/A20060259

References

[1] Han, S.-J.; Zhang, S.-W.; Chen, W.-Q.; Li, C.-L. Chin. J. Clin. Oncol. 2013, 18, 330(in Chinese). (韩苏军, 张思维, 陈万青, 李长岭, 临床肿瘤学杂志, 2013, 18, 330.)
[2] Wu, Q.-J.; Xu, J.-F. Shi, R. J. Shanghai Jiaotong Univ., Med. Sci. 2011, 31, 672(in Chinese). (吴琪俊, 徐剑锋, 施榕, 上海交通大学学报(医学版), 2011, 31, 672.)
[3] Cuzick, J.; Thorat, M. Lancet Oncol. 2014, 15, 484.
[4] Xiang, D.-C.; Liu, H.; Meng, Q.-H.; Lan, M.-B.; Wei, G. Acta Chim. Sinica 2013, 71, 1435(in Chinese). (向德成, 刘恒, 孟庆华, 蓝闽波, 卫钢, 化学学报, 2013, 71, 1435.)
[5] Zhang, Y.; Zhang, L.-Y.; Liu, L.-M.; Wang, T.; Meng, Y.-Q.; Li, N.; Li, E.-D.; Wang, Z.-J.; Liu, X.-J.; Zheng, J.-X.; Shan, L.-H.; Liu, H.-M.; Zhang, Q.-R. Chin. J. Org. Chem. 2020, 40, 1731.
[6] Liu, X.; Zhao, J.; Feng, C.-G. Acta Chim. Sinica 2006, 64, 1988(in Chinese). (刘霞, 赵军, 冯长根, 化学学报, 2006, 64, 1988.)
[7] He, Q.; Zhang, G.-H. Prog. Oncol. 2017, 15, 7(in Chinese). (何乾, 张国辉, 癌症进展, 2017, 15, 7.)
[8] Zhao, G.-C.; Wu, B.; Zhang, B.; Hu, C.-Y.; Jia, J.-D.; Wang, D.-W. J. Hainan Med. Univ. (in Chinese) 10.13210/j.cnki.jhmu.20200720.002(赵国臣, 吴波, 张彬, 胡操阳, 贾杰东, 王东文, 海南医学院学报. 2020.)
[9] Yan, H.-Y.; Xing, J.-C.; Zhang, K.-Y.; Wang, T.; Bai, P.-D. J. Clin. Urology (China) 2020, 35, 242(in Chinese). (闫厚煜, 邢金春, 张开颜, 王涛, 白培德, 临床泌尿外科杂志, 2020, 35, 242.)
[10] Ghorbania, F.; Abbaszadehb, H.; Dolatabadic, J. E. N.; Aghebati-Malekid, L.; Yousefi, M. Biosens. Bioelectron. 2019, 142, 111484.
[11] Vickers, A.; Cronin, A.; Roobol M. Clin. Cancer Res. 2010, 16, 4374.
[12] Lilja, H.; Oldbring, J.; Rannevik, G. J. Clin. Invest. 1987, 80, 281.
[13] Oesterling, J. J. Urol. 1991, 145, 907.
[14] Lilja, H.; Ulmert, D.; Vickers, A. J. Nat. Rev. 2008, 8, 268.
[15] Stenman, U. H.; Leinonen, J.; Zhang, W. M. Semin. Cancer Biol. 1999, 19, 83.
[16] Frydeberg, M.; Stricker, P. D.; Kaye, K. W. Lancet 2005, 349, 1681.
[17] Salman, J. W.; Schoots, I.; Carlsson, S. V. Adv. Exp. Med Biol. 2015, 867, 93.
[18] Desmée, S.; Mentré, F.; Veyrat-Follet, C. AAPS J. 2015, 17, 691.
[19] Chen, R.; Huang, Y. R.; Cai, X. B. PLoS One 2015, 10, 130308.
[20] Vickers, A. J.; Cronin, A. M.; Aus, G. Cancer 2010, 116, 2612.
[21] Denmeade, S. R.; Lou, W.; Lövgren, J.; Isaacs, J. T. Cancer Res. 1997, 57, 4924.
[22] Liu, D.; Huang, X.; Wang, F.; Ma, Y.; Niu, G.; Hight-Walker, A. R.; Chen, X. ACS Nano 2013, 7, 5568.
[23] Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.
[24] Triroj, N.; Jaroenapibal, P.; Beresford, R. Biosens. Bioelectron. 2011, 26, 2927.
[25] Liu, Z.-Y.; Yuan, R.; Chai, Y.-Q.; Zhuo, Y.; Hong, C.-L. Acta Chim. Sinica 2009, 67, 637(in Chinese). (刘中原, 袁若, 柴雅琴, 卓颖, 洪成林, 化学学报, 2009, 67, 637.)
[26] Xu, S. J.; Liu, Y.; Wang, T. H.; Li, J. H. Anal. Chem. 2011, 83, 3817.
[27] Wang, H. M.; Huang, X. Q.; Yuan, P.; Feng, P. Anal. Chim. Acta 2020, 1104, 53.
[28] Qi, H.; Li, M.; Dong, M. M.; Ruan, S.; Zhang, C. Anal. Chem. 2014, 86, 1372.
[29] Liu, S.; He, P.; Hussain, S.; Lu, H.; Zhou, X.; Lv, F.; Liu, L.; Dai, Z.; Wang, S. ACS Appl. Mater. Interfaces 2018, 10, 6618.
[30] Zhao, J.; Wang, S. P.; Zhang, S. B.; Zhao, P. N.; Wang, J. R.; Yan, M.; Ge, S. G.; Yu, J. H. Biosens. Bioelectron.2020, 150, 111958.
[31] Gao, C. M.; Yu, H. H.; Li, C. J.; Cui, K.; Yu, J. H. Anal. Chem. 2020, 92, 2902.
[32] Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.
[33] Shao, F. Y.; Zhang, L. H.; Jiao, L.; Wang, X. Y.; Miao, L. Y.; Li, H.; Zhou, F. M. Anal. Chem. 2018, 90, 8673.
[34] Kim, H. J.; Jang, C. H. Sens. Actuators, B 2019, 282, 574.
[35] Qi, L.; Hu, Q.; Kang, Q.; Bi, Y.; Jiang, Y.; Yu, L. Anal. Chem. 2019, 91, 11653.
[36] Qi, L. B.; Liu, S. Y.; Jiang, Y. F.; Lin, J. M.; Yu, L.; Hu, Q. Z. Anal. Chem. 2020, 92, 3867.
[37] Savory, N.; Abe, K.; Sode, K.; Ikebukuro, K. Biosens. Bioelectron. 2010, 26, 1386.
[38] Bull, H.; Murray, P. G.; Thomas, D.; Fraser, A.; Nelson, P. N. Mol. Pathol. 2002, 55, 65.
[39] Ozu, C.; Nakashima, J.; Horiguchi, Y.; Oya, M.; Ohigashi, T.; Murai, M. Int. J. Urol. 2008, 15, 419.
[40] Makarov, D. V.; Loeb, S.; Getzenberg, R. H.; Partin, A. W. Annu. Rev. Med. 2009, 60, 139.
[41] Dupont, A.; Cusan, L.; Gomez, J. L. J. Urol. 1991, 146, 1064.
[42] Sasamoto, H.; Maeda, M.; Tsuji, A.; Manita, H. Anal. Chim. Acta 1995, 309, 221.
[43] Hassan, S. S. M.; Sayour, H. E. M.; Kamel, A. H. Anal. Chim. Acta 2009, 640, 75.
[44] Guo, Y. Y.; Li, X. Q.; Dong, Y. M.; Wang, G. L. ACS Sustainable Chem. Eng. 2019, 7, 7572.
[45] Deng, H. H.; Lin, X. L.; Liu, Y. H.; Li, K. L.; Zhuang, Q. Q.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Nanoscale 2017, 9, 10292.
[46] Huang, Y. Y.; Feng, H.; Liu, W. D.; Chen, J. R.; Qian, Z. S. Anal. Chem. 2016, 88, 11575.
[47] Sun, J.; Yang, F.; Yang, X. R. Nanoscale 2015, 7, 16372.
[48] Fan, Y. B.; Chen, D. Y. Acta Chim. Sinica 2014, 72, 1012(in Chinese). (范艳斌, 陈道勇, 化学学报, 2014, 72, 1012.)
[49] Tian, J. Y.; Yang, Y. T.; Lu, J. S. Biosens. Bioelectron. 2019, 135, 160.
[50] Li, H.; Xing, J. H.; Chen, J. Q. Carbon 2015, 81, 474.
[51] Li, Z. Z.; Xin, Y. M.; Zhang, Z. H. Anal. Chem. 2015, 87, 10491.
[52] Zhang, H.; Wang, G.; Lv, X. J.; Li, J. H. Chem. Mater. 2008, 20, 6543.
[53] Cao, S. W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5, 2101.
[54] Hu, S. Z.; Ma, L.; Liu, D.; Gui, J. Z. Appl. Surf. Sci. 2014, 311, 164.
[55] Martha, S.; Nashim, A.; Parida, K. M. J. Mater. Chem. A 2013, 1, 7816.
[56] Cui, Y. J.; Ding, Z. X.; Wang, X. C. Phys. Chem. Chem. Phys. 2012, 14, 1455.
[57] Lu, M. L.; Pei, Z. X.; Zheng, Z. Y.; Huang, M. L.; Liu, P. Phys. Chem. Chem. Phys. 2014, 16, 21280.
[58] Sumrra, S. H.; Kausar, S.; Raza, M. A.; Chohan, Z. H. J. Mol. Struct. 2018, 1168, 202.
[59] Zhao, S. F.; Gai, P. P.; Yu, W.; Li, H. Y.; Li, F. Chem. Commun. 2019, 55, 1887.
[60] Thorum, M. S.; Yadav, J.; Gewirth, A. A. Angew. Chem. Int. Ed. 2009, 48, 165.
[61] Zou, Q. J.; Kegel, L. L.; Booksh, K. S. Anal. Chem. 2015, 87, 2488.
[62] Huang, M.; Tian, J.; Zhou, C.; Lu, J. Sens. Actuators, B 2020, 307, 127654.
[63] Chen, C.; Liu, W.; Li, J.; Lu, Y.; Chen, W. ACS Appl. Mater. Interfaces 2019, 11, 47564.
[64] Lin, Z.; Zhang, X. M.; Liu, S. J.; Chen, R. T.; Lin, X.; Chen, W. Anal. Chim. Acta 2020, 1105, 162.
[65] Qian, Z. S.; Chai, L. J.; Zhou, Q.; Tang, C.; Chen, J. R.; Feng, H. Anal. Chem. 2015, 87, 7332.
[66] Qu, Z. Y.; Na, W. D.; Liu, X. T.; Liu, H.; Su, X. G. Anal. Chim. Acta 2018, 997, 52.
[67] Li, S. Q.; Hua, X.; Chen, Q. M.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. Biosens. Bioelectron. 2019, 137, 133.
[68] Chen, Y. Y.; Wang, Z. Z.; Hao, X. L.; Li, F. L.; Zheng, Y. J.; Zhang, J. Z.; Lin, X. H.; Weng, S. H. Sens. Actuators, B 2019, 297, 126784.
[69] Liu, X. J.; Zhang, Y. S.; Liang, A. Y.; Ding, H. W.; Gai, H. W. Chem. Commun. 2019, 55, 11442.
[70] Liu, G. L.; Long, Y. T.; Choi, Y.; Kang, T.; Lee, L. P. Nat. Methods 2007, 4, 1015.
[71] Li, S. S.; Kong, Q. Y.; Zhang, M.; Yang, F.; Kang, B.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2018, 90, 3833.
[72] Choi, Y.; Kang, T.; Lee, L. P. Nano Lett. 2009, 9, 85.
[73] Cao, Y.; Lin, Y.; Qian, R. C.; Ying, Y. L.; Si, W.; Sha, J. J.; Chen, Y. F.; Long, Y. T. Chem. Commun. 2016, 52, 5230.
[74] Yan, X.; Xia, C.; Gao, P. F.; Huang, C. Z. Anal. Chem. 2020, 92, 2130.
[75] Zhang, J.; Yuan, Y.; Han, Z.; Liu, G. B. Biosens. Bioelectron. 2019, 141, 111442.
[76] Feng, N.; Hu, J. J.; Ma, Q. L.; Ju, H. X. Biosens. Bioelectron. 2020, 157, 112159.
[77] Ma, Q. L.; Chen, Y. L.; Feng, N.; Yan, F.; Ju, H. X. Sci. China Chem. 2020, 63, 11426-020-9850-3.
Outlines

/