Article

pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer

  • Li Rongye ,
  • Khiman Mehul ,
  • Sheng Li ,
  • Sun Jing
Expand
  • College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Received date: 2020-08-01

  Online published: 2020-09-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51722302 and 21674054) and the Natural Science Foundation of Shandong Province (No. ZR2019JQ17).

Abstract

Similar to natural proteins, polypeptides can form secondary structures depending on their physical properties. Many efforts have been made towards the self-assembly of triblock copolymer containing polypeptide as an important component to construct hierarchical structures by utilizing the pH-responsive conformation transformation. In this work, a pH-responsive poly(ethylene glycol)-b-poly(L-lysine)-b-poly(styrene) (PEG-b-PLL-b-PS) triblock copolymer was prepared via a combination of controlled ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP). In the triblock copolymer, PLL is water-soluble in acidic solution with random coil conformation, but becomes insoluble helix in alkaline solution. PEG has excellent water solubility that can exhibit protein-resistant property. PS serves as hydrophobic part. Self-assembly of the polymer was examined by transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflection-infrared spectrometer (ATR-IR). The triblock copolymer forms spherical micelles in 1:1 volume ratio of tetrahydrofuran-water mixed solvent, in which the hydrophobic PS segment forms a core and the two hydrophilic segments PLL and PEG serve as shell and corona, respectively. The spheres as the subunits further transform into hierarchical 1D fiber-like structure in the presence of THF after 7 d of aging, confirmed by both TEM and AFM techniques. Upon removing THF, the spherical shape was re-obtained with slightly smaller diameter, so called “frozen micelles”. Further, the diameter of the spheres increases with pH increasing. A sphere-to-vesicle transition was observed at pH 13 as the secondary conformation of PLL transforms from coil to α-helix. The dialysis of these solutions can convert the vesicles back into spherical morphology with slightly smaller diameter.

Cite this article

Li Rongye , Khiman Mehul , Sheng Li , Sun Jing . pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer[J]. Acta Chimica Sinica, 2020 , 78(11) : 1235 -1239 . DOI: 10.6023/A20080339

References

[1] Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.
[2] Qiu, H.; Gao, Y.; Boott, C. E.; Gould, O. E. C.; Harniman, R. L.; Miles, M. J.; Webb, S. E. D.; Winnik, M. A.; Manners, I. Science 2016, 352, 697.
[3] Qiu, H.; Hudson, Z. M.; Winnik, M. A.; Manners, I. Science 2015, 347, 1329.
[4] Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. Nature 2013, 503, 247.
[5] Xu, X.; Wu, G.; Zhang, J.; Wang, Y.; Fan, Y.; Ma, J. Acta Chim. Sinica 2008, 66, 1102(in Chinese). (徐旭, 伍国琳, 张洁, 王亦农, 范云鸽, 马建标, 化学学报, 2008, 66, 1102.)
[6] Cademartiri, L.; Bishop, K. J. M. Nat. Mater. 2015, 14, 2.
[7] Walther, A.; Müller, A. H. Chem. Rev. 2013, 113, 5194.
[8] Movassaghian, S.; Merkel, O. M.; Torchilin, V. P. Wiley Interdiplinary Reviews Nanomedicine & Nanobiotechnology 2015, 7, 691.
[9] Jiang, J.; Shen, N.; Ci, T.; Tang, Z.; Gu, Z.; Li, G.; Chen, X. Adv. Mater. 2019, 31, 1.
[10] Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004, 306, 98.
[11] Kubowicz, S.; Baussard, J. F.; Lutz, J. F.; Thünemann, A. F.; Berlepsch, H. V.; Laschewsky, A. Angew. Chem. Int. Ed. 2005, 44, 5262.
[12] Gröschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Müller, A. H. Nat. Commun. 2012, 3, 710.
[13] Zhuang, Z.; Jiang, T.; Lin, J.; Gao, L.; Yang, C.; Wang, L.; Cai, C. Angew. Chem. Int. Ed. 2016, 55, 12522.
[14] Zhang, L.; Eisenberg, A. Science 1995, 268, 1728.
[15] Hadjichristidis, N.; Hirao, A.; Tezuka, Y.; Prez, F. D. Wiley InterScience, John Wiley & Sons Inc., New York, 2011, p. 823.
[16] Zhang, J.; Chen, X.; Wei, H.; Wan, X. Chem. Soc. Rev. 2013, 42, 9127.
[17] Chen, P.; Qiu, M.; Deng, C.; Meng, F.; Zhang, J.; Cheng, R.; Zhong, Z. Biomacromolecules 2015, 16, 1322.
[18] Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047(in Chinese). (冉茂双, 施冬健, 董罕星, 陈明清, 赵增亮, 化学学报, 2015, 73, 1047.)
[19] Sheng, L.; Chen, H.; Fu, W.; Li, Z. Acta Polym. Sinica 2015, 8, 982(in Chinese). (盛力, 陈红, 符文鑫, 李志波, 高分子学报, 2015, 8, 982.)
[20] Sheng, L.; Chen, H.; Fu, W.; Li, Z. Langmuir 2015, 31, 11964.
[21] Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Nat. Chem. 2017, 9, 785.
[22] Yu, K.; Eisenberg, A. Macromolecules 1996, 29, 6359.
[23] Betthausen, E.; Hanske, C.; Müller, M.; Fery, A.; Schacher, F. H.; Müller, A. H. E.; Pochan, D. J. Macromolecules 2014, 47, 1672.
[24] Zhang, S.; Li, Q.; Lin, J.; Cai, C.; Wang, L. Acta Polym. Sinica 2017, 2, 294(in Chinese). (张朔, 李庆, 林嘉平, 蔡春华, 王立权, 高分子学报, 2017, 2, 294.)
[25] Bhargava, P.; Tu, Y.; Zheng, J.; Xiong, H.; Quirk, R. P.; Cheng, S. Z. D. J. Am. Chem. Soc. 2007, 129, 1113.
[26] Özdemir, C.; Güner, A. Eur. Polym. J. 2007, 43, 3068.
[27] Rozenberg, M.; Shoham, G. Biophys. Chem. 2007, 125, 166.
[28] Prestrelski, S. J.; Tedeschi, N.; Arakawa, T.; Carpenter, J. F. Biophys. J. 1993, 65, 661.
[29] Mauerer, A.; Lee, G. Eur. J. Pharm. Sci. 2006, 62, 131.
[30] Jain, S.; Bates, F. S. Macromolecules 2004, 37, 1511.
[31] Rager, T.; Meyer, W. H.; Wegner, G. Macromol. Chem. Phys. 1999, 200, 1672.
[32] Stam, J. V.; Creutz, S.; Schryver, F. C. D.; Jérôme, R. Macromolecules 2000, 33, 6388.
[33] Zhang, L.; Barlow, R. J.; Eisenberg, A. Macromolecules 1995, 28, 6055.
[34] Tuzar, Z.; Kratochvil, P. Surf. Colloid Sci. 1993, 15, 1.
[35] Munk, P. Solvents and Self-Organization of Polymers, Springer, Netherlands, New York, 1996, p. 19.
[36] Zhang, Y.; Jiang, M.; Zhao, J.; Wang, Z.; Dou, H.; Chen, D. Langmuir 2005, 21, 1531.
[37] Lei, L.; Gohy, J.; Willet, N.; Zhang, J.; Varshney, S.; Jérôme, R. Macromolecules 2004, 37, 1089.
[38] Jada, A.; Hurtrez, G.; Siffert, B.; Riess, G. Macromol. Chem. Phys 1996, 197, 3697.
[39] Zhang, L.; Yu, K.; Eisenberg, A. Science 1996, 272, 1777.
[40] Ray, J. G.; Naik, S. S.; Hoff, E. A.; Johnson, A. J.; Ly, J. T.; Easterling, C. P.; Patton, D. L.; Savin, D. A. Macromol. Chem. Phys. 2012, 33, 819.
[41] Naik, S. S.; Ray, J. G.; Savin, D. A. Langmuir 2011, 27, 7231.
[42] Zhang, W.; He, J.; Liu, Z.; Ni, P.; Zhu, X. J. Polym. Sci. Part A:Polym. Chem. 2010, 48, 1079.
[43] Jackson, M.; Mantsch, H. H. Crit. Rev. Biochem. Mol. 1995, 30, 95.
[44] Dzwolak, W.; Smirnovas, V. Biophys. Chem. 2005, 115, 49.
[45] Mirtič, A.; Grdadolnik, J. Biophys. Chem. 2013, 175-176, 47.
Outlines

/