Communication

Enhancing Zn2+ Storage Capability of Cobalt Manganese Oxide by In-Situ Nanocarbon Coating

  • He Jinjun ,
  • Zhang Haozhe ,
  • Liu Xiaoqing ,
  • Lu Xihong
Expand
  • MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

Received date: 2020-07-15

  Online published: 2020-09-15

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21822509, U1810110, 21802173) and Science and Technology Planning Project of Guangdong Province (No. 2018A050506028).

Abstract

The cobalt manganese oxide (CMO), with the advantages of high safety, non-toxicity, easy to obtain, multiple active sites, holds great potential in constructions of Zn-ion batteries (ZIBs). Yet, the dissolution of electrode materials into the electrolyte usually causes the structural collapse during repeated charge/discharge courses, which greatly limits the lifespan of ZIBs and thus restricts their further development. Herein, an in-situ coating method is developed to address this issue. Via a simple one-step hydrothermal method, a nanoscale carbon layer (denoted as nC) is introduced onto the surface of CMO (CMO@C) to prolong its cycling stability. Specifically, 30 mmol NH4F and 75 mmol CO(CH2)2 are first dissolved in 100 mL deionized water. Then, 11.25 mmol Mn(CH3COO)2 and 3.75 mmol Co(CH3COO)2 are added and stirred until the solid completely dissolves. Finally, 0.5 g glucose is dissolved in the solution and stirred for 5 min. The precursor solution is transferred into the 25 mL Teflon-lined stainless-steel autoclave and heated at 125℃ for 6 h in the oven. The as-obtained powder is washed three times by water and then dried at 60℃ overnight. The CMO@C sample is obtained after annealing the powder in air at 450℃ for 1 h. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectra (Raman) characterizations demonstrate that the introduction of the nC coating layer does not alter the composition and structure of CMO. Moreover, taking advantages of the superior conductivity of the carbon coverage, the CMO@C possesses a smaller charge transfer resistance and higher Zn ion diffusion capability compared with the CMO counterpart. The quicker charge transfer and faster ion exchange characteristics are both beneficial to the electrochemical performance optimization, both for the capacity enlargement and for the lifespan extension. As a proof of concept, at the current density of 0.5 A·g-1, the CMO@C shows a high specific capacity of 271.9 mAh·g-1 and no capacity loss is detected after 1000 cycle tests, which substantially outstrip those of the CMO (103.7 mAh·g-1 and 130 cycle lifespan). The work sheds light on the rational design of bimetal oxides as high-performance cathodes for ZIBs assembly.

Cite this article

He Jinjun , Zhang Haozhe , Liu Xiaoqing , Lu Xihong . Enhancing Zn2+ Storage Capability of Cobalt Manganese Oxide by In-Situ Nanocarbon Coating[J]. Acta Chimica Sinica, 2020 , 78(10) : 1069 -1075 . DOI: 10.6023/A20070315

References

[1] Tian, C.; Tian, J.; Chen, F.; Tong, L; Gao, S.; Xu, C.; Wang, Z. J. Chongqing University Tech. (Natural Science) 2018, 10, 34(in Chinese). (田崔钧, 田君, 陈芬, 佟蕾, 高申, 徐春常, 王子冬, 重庆理工大学学报(自然科学), 2018, 10, 34.)
[2] Tang, G.; Mao, K.; Zhang, J.; Lyu, P.; Cheng, X.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2020, 78, 444(in Chinese). (汤功奥, 毛鲲, 张静, 吕品, 程雪怡, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2020, 78, 444.)
[3] Wang, X.; Li, Y.; Du, L.; Gao, F.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2018, 76, 627(in Chinese). (王啸, 李有彬, 杜玲玉, 高福杰, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2018, 76, 627.)
[4] Wang, L.; Zhao, D.; Liu, X.; Yu, P.; Fu, H. Acta Chim. Sinica 2017, 75, 231(in Chinese). (王蕾, 赵冬冬, 刘旭, 于鹏, 付宏刚, 化学学报, 2017, 75, 231.)
[5] Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702869.
[6] Zhang, L.; Zhang, B.; Wang, C.; Dou, Y.; Zhang, Q.; Liu, Y.; Gao, H.; Al-Mamun, M.; Pang, W.; Guo, Z.; Dou, S.; Liu, H.; Nano Energy 2019, 60, 432.
[7] Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, 1903675.
[8] He, J.; Liu, X.; Zhang, H.; Yang, Z.; Shi, X.; Liu, Q.; Lu, X. ChemSusChem 2020, 13, 1568.
[9] Tang, B.; Shan, L.; Liang, S.; Zhou, J. Energy Envir. Sci. 2019, 12, 3288.
[10] Alfaruqi, M.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J.; Choi, S.; Kim, J. Chem. Mater. 2015, 27, 3609.
[11] He, X.; Zhang, H.; Zhao, X.; Zhang, P.; Chen, M.; Zheng, Z.; Han, Z.; Zhu, T.; Tong, Y.; Lu, X. Adv. Sci. 2019, 6, 1900151
[12] Sada, K.; Senthilkumar, B.; Barpanda, P. J. Mater. Chem. A 2019, 7, 23981.
[13] Bai, S.; Song, J.; Wen, Y.; Cheng, J.; Cao, G.; Yang, Y.; Li, D. RSC Adv. 2016, 6, 40793.
[14] Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X. J. Mater. Chem. A 2019, 7, 22079.
[15] Wu, C.; Gu, S.; Zhang,Q.; Bai, Y.; Li, M.; Yuan, Y.; Wang, H.; Liu, X.; Yuan, Y.; Zhu, N.; Wu, F.; Li, H.; Gu, L.; Lu, J. Nat. Commun. 2019, 10, 73.
[16] Xiong, T.; Yu, Z.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y.; Pennycook, S.; Lee, W.; Xue, J. Adv. Energy Mater. 2019, 9, 1803815.
[17] Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K.; Liu, J. Nat. Energy 2016, 1, 16039.
[18] Soundharrajan, V.; Sambandam, B.; Kim, S.; Mathew, V.; Jo, J.; Kim, S.; Lee, J.; Islam, S.; Kim, K.; Sun, Y.; Kim, J. ACS Energy Lett. 2018, 3, 1998.
[19] Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894.
[20] Zhang, H.; Wang, J.; Liu, Q.; He, W.; Lai, Z.; Zhang, X.; Yu, M.; Tong, Y.; Lu, X. Energy Storage Mater. 2019, 21, 154.
[21] Zhou, X.; Li, X.; Liao, B. J. Chongqing University Tech. (Natural Science) 2018, 7, 124(in Chinese). (周小燕, 李小平, 廖本洪, 重庆理工大学学报(自然科学), 2018, 7, 124.)
[22] Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica 2017, 75, 218(in Chinese). (刘丽露, 戚兴国, 胡勇胜, 陈立泉, 黄学杰, 化学学报, 2017, 75, 218.)
[23] Zhou, Y.; Chen, T.; Zhang, J.; Liu, Y.; Ren, P. Chin. J. Chem. 2017, 35, 1294.
[24] Mo, X.; Liu, W.; Xie, J.; Luo, R.; Hu, S. J. Chongqing University Tech. (Natural Science) 2020, 5, 220(in Chinese). (莫兴丹, 刘伟, 谢健, 罗嵘, 胡顺仁, 重庆理工大学学报(自然科学), 2020, 5, 220.)
[25] Zheng, Z.; Wu, Z.; Xiang, W.; Guo, X. Acta Chim. Sinica 2017, 75, 501(in Chinese). (郑卓, 吴振国, 向伟, 郭孝东, 化学学报, 2017, 75, 501.)
[26] Zhu, H.; Gu, L.; Yu, D.; Sun, Y.; Wan, M.; Zhang, M.; Wang, L.; Wang, L.; Wu, W.; Yao, J.; Du, M.; Guo, S. Energy Envir. Sci. 2017, 10, 321.
[27] Lu, Y.; Wang, J.; Zeng, S.; Zhou, L.; Xu, W.; Zheng, D.; Liu, J.; Zeng, Y.; Lu, X. J. Mater. Chem. A 2019, 7, 21678.
[28] Sumi, V. S.; Elias, L.; Shibli, S. M. A. Int. J. Hydrogen Energy 2020, 45, 12360.
[29] Zhao, Z.; Lin, J.; Wang, G.; Muhammad, T. AIChE J. 2015, 61, 239.
[30] Zeng, Y.; Lin, Z.; Wang, Z.; Wu, M.; Tong, Y.; Lu, X. Adv. Mater. 2018, 30, 1707290.
[31] Wang, C.; Zeng, Y.; Xiao, X.; Wu, S.; Zhong, G.; Xu, K.; Wei, Z.; Su, W.; Lu, X. J. Energy Chem. 2020, 43, 182.
[32] Zhang, H.; Liu, Q.; Fang, Y.; Teng, C.; Liu, X.; Fang, P.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, 1904948.
[33] Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894.
[34] Liu, C.; Neale, Z.; Zheng, J.; Jia, X.; Huang, J.; Yan, M.; Tian, M.; Wang, M.; Yang, J.; Cao, G. Energy Environ. Sci. 2019, 12, 2273.
[35] Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapiena, J.; Zhi, C. Energy Environ. Sci. 2018, 11, 2521.
[36] Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 1.
[37] Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 1.
[38] Liu, J.; Wang, J.; Ku, Z.; Wang, H.; Chen, S.; Zhang, L.; Lin, J.; Shen, Z. ACS nano, 2016, 10, 1007.
[39] Liu, J.; Chen, M.; Zhang, L.; Jiang, J.; Yan, J.; Huang, Y.; Lin, J.; Fan, H.; Shen, Z. Nano Lett. 2014, 14, 7180.
[40] Dai, X.; Wan, F.; Zhang, L.; Cao, H.; Niu, Z. Energy Storage Mater. 2019, 17, 143.
[41] Alfaruqi, M.; Gim, J.; Kim, S.; Song, J.; Pham, D.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. Electrochem. Commun. 2015, 60, 121.
Outlines

/