Review

Advances on Nickel-Catalyzed C(sp3)-C(sp3) Bond Formation

  • Cheng Lei ,
  • Zhou Qilin
Expand
  • Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

Received date: 2020-07-29

  Online published: 2020-09-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21790332, 21790330).

Abstract

Transition metal-catalyzed coupling reactions are powerful synthetic methods for the C-C bond formation. Many coupling reactions such as Heck reaction, Negishi coupling, and Suzuki coupling have been widely applied in the syntheses of pharmaceuticals, functional materials and fine chemicals. In those coupling reactions, a C(sp2)-C(sp2) bond is formed in high efficiency and selectivity. However, in contrast to the C(sp2)-C(sp2) couplings, the C(sp3)-C(sp3) couplings are more difficult and develop late. Because the C(sp3)-C(sp3) bonds are ubiquitous in organic compound, the C(sp3)-C(sp3) bond formation is the central task of research in organic chemistry. In the past two decades, a great effort has been devoted to the development of cross-coupling reactions between alkyls to construct C(sp3)-C(sp3) bonds and impressive progress has been achieved. Among the transition metal catalysts that have been used in the construction of C(sp3)-C(sp3) bonds, nickel was found to be a preferable one, exhibiting unique activity and selectivity. Nickel catalysts promote the activation of alkyl electrophiles via radical catalytic cycles and inhibit and/or manipulate β-H elimination reactions. Nickel has several variable valence states and can flexibly participate in tandem reactions and reductive cross-coupling reactions. All these characteristic natures contribute to the success of nickel catalysts in the construction of C(sp3)-C(sp3) bonds. In this review, we will describe the advances on the nickel-catalyzed C(sp3)-C(sp3) bond-forming reactions. The main contents of this review include:the cross-coupling of alkyl electrophiles with organometallic reagents; the coupling involving a C(sp3)-H bond activation in the presence of directing group; the coupling co-catalyzed by nickel and photocatalyst; the reductive coupling of two alkyl electrophiles; and the additions of nucleophiles or electrophiles to alkenes such as hydroalkylation and difunctionalization of alkenes. The review will focus on the latest developments of nickel-catalyzed alkyl coupling reactions in the past two decades. The mechanisms of each reaction are discussed in detail for understanding the reactions.

Cite this article

Cheng Lei , Zhou Qilin . Advances on Nickel-Catalyzed C(sp3)-C(sp3) Bond Formation[J]. Acta Chimica Sinica, 2020 , 78(10) : 1017 -1029 . DOI: 10.6023/A20070335

References

[1] For reviews on nickel catalysis:(a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature, 2014, 509, 299. (b) Ananikov, V. P. ACS Catal. 2015, 5, 1964. (c) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124. (d) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230. (e) Modern Organonickel Chemistry, Eds.:Tamaru, Y., Wiley-VCH, Weinheim, 2005. (f) Nickel Catalysis in Organic Synthesis:Methods and Reactions, Eds.:Ogoshi, S., Wiley-VCH, Weinheim, 2020.
[2] Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem. Int. Ed. 1996, 34, 2723.
[3] (a) Giovannini, R.; Stüdemann, T.; Dussin, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 2387. (b) Giovannini, R.; Stüdemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. 1999, 64, 3544. (c) Piber, M.; Jensen, A. E.; Rottländer, M.; Knochel, P. Org. Lett. 1999, 1, 1323.
[4] Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222.
[5] Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 5749.
[6] Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726.
[7] (a) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602. (b) Smith, S. W.; Fu, G. C. Angew. Chem. Int. Ed. 2008, 47, 9334. (c) Vechorkin, O.; Hu, X. Angew. Chem. Int. Ed. 2009, 48, 2937.
[8] Fisher, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
[9] Binder, J. T.; Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003.
[10] (a) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482. (b) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756. (c) Lundin, P. M.; Esquivias, J.; Fu, G. C. Angew. Chem. Int. Ed. 2009, 48, 154. (d) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645. (e) Liang, Y.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 5520. (f) Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11908. (g) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154. (h) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 5794. (i) Huo, H.; Gorsline, B. J.; Fu, G. C. Science 2020, 367, 559.
[11] Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. Science, 2016, 354, 1265.
[12] Schwarzwalder, G. M.; Matier, C. D.; Fu, G. C. Angew. Chem. Int. Ed. 2019, 58, 3571.
[13] Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem. Soc. 2013, 135, 12004.
[14] Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.
[15] Hu, X. Chem. Sci. 2011, 2, 1867.
[16] (a) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Acc. Chem. Res. 2015, 48, 2344. (b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.
[17] (a) Guan, B.-T.; X, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268. (b) Yu, D.-G.; Wang, X.; Zhu, R.-L.; Luo, S.; Wang, B.-Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638.
[18] Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389.
[19] Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.
[20] Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P. J. Am. Chem. Soc. 2019, 141, 2257.
[21] Zhan, B.-B.; Liu, B.; Hu, F.; Shi, B.-F. Sci. Chin. Chem. 2015, 60, 2097(in Chinese). (占贝贝, 刘斌, 胡芳, 史炳锋, 中国科学-化学, 2015, 60, 2097.)
[22] Wu, X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2014, 136, 1789.
[23] (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[24] (a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052. (b) Tells, J. C.; Kelly, C. B.; Primer, D.V.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (c) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem. Int. Ed. 2019, 58, 6152.
[25] Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.
[26] Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.
[27] Smith, R. T.; Zhang, X.; Rincón, J. A.; Agejas, J.; Mateos, C.; Barberis, M.; García-Cerrada, S.; Frutos, O. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 17433.
[28] For selected reviews of reductive cross-couplings:(a) Knappke, C. E. I.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Chem. Eur. J. 2014, 20, 6828. (b) Gu, J.; Wang, X.; Xue, W.; Gong, H. Org. Chem. Front. 2015, 2, 1411. (c) Wang, X.; Dai, Y.; Gong, H. Top. Curr. Chem. 2016, 374, 43. (d) Lucas, E. L.; Jarvo, E. R. Nat. Rev. Chem. 2017, 1, No. 0065. (e) Poremba, K. E.; Dibrell, S. E.; Reisman, S. E. ACS Catal. 2020, 10, 8237.
[29] Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Org. Lett. 2011, 13, 2138.
[30] Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. Chem. Sci. 2013, 4, 4022.
[31] Komeyama, K.; Michiyuki, T.; Osaka, I. ACS Catal. 2019, 9, 9285.
[32] (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. (c) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333. (e) Yan, T.; Guironnet, D. Sci. Chin. Chem. 2020, 63, 755.
[33] Wang, X.-X.; Lu, X.; Li. Y.; Wang, J.-W.; Fu, Y. Sci Chin. Chem.10.1007/s11426-020-9838-x.
[34] Lu, X.; Xiao, B.; Zhang, Z.-Q.; Gong, T.-J.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat. Commun. 2016, 7, 11129.
[35] Zhou, F.; Zhu, J.; Zhang, Y.; Zhu, S. Angew. Chem. Int Ed. 2018, 57, 4058.
[36] Wang, Z.-Y.; Wan, J.-H.; Wang, G.-Y.; Wang, R.; Jin, R.-X.; Lan, Q.; Wang, X.-S. Tetrahedron Lett. 2018, 59, 2302.
[37] (a) Sun, S.-Z.; Borjesson, M.; Martin-Montero, R.; Martin, R. J. Am. Chem. Soc. 2018, 140,12765. (b) Qian, D.; Hu, X. Angew. Chem. Int. Ed. 2019, 58, 18519.
[38] Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.
[39] Sun, S.-Z.; Romano, C.; Martin, R. J. Am. Chem. Soc. 2019, 141, 16197.
[40] Wang, Z.; Yin, H.; Fu, G. C. Nature 2018, 563, 379.
[41] Zhou, F.; Zhang, Y.; Xu, X.; Zhu, S. Angew. Chem. Int. Ed. 2019, 58, 1754.
[42] He, S.-J.; Wang, J.-W.; Li, Y.; Xu, Z.-Y.; Wang, X.-X.; Lu, X.; Fu, Y. J. Am. Chem. Soc. 2020, 142, 214.
[43] Yang, Z.-P.; Fu, G. C. J. Am. Chem. Soc. 2020, 142, 5870.
[44] Green, S. A.; Huffman, T. R.; McCourt, R. O.; van der Puyl, V.; Shenvi, R. A. J. Am. Chem. Soc. 2019, 141, 7709.
[45] Cheng, L.; Li, M.-M.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2018, 140, 11627.
[46] Chen, T.; Yang, H.; Yang, Y.; Dong, G.; Xing, D. ACS Catal. 2020, 10, 4238.
[47] (a) Cheng, L.; Li, M.-M.; Wang, B.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. Chem. Sci. 2019, 10, 10417. (b) Lv, L.; Zhu, D.; Qiu, Z.; Li, J.; Li, C.-J. ACS Catal. 2019, 9, 9199.
[48] Ji, D.-W.; He, G.-C.; Zhang, W.-S.; Zhao, C.-Y.; Hu, Y.-C.; Chen, Q.-A. Chem. Commun. 2020, 56, 7431.
[49] (a) Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314. (b) Giri, R.; KC, S. J. Org. Chem. 2018, 83, 3013. (c) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287. (d) Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371. (e) Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542.
[50] Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastage, M. D.; Baran, P. S. Science, 2016, 352, 801.
[51] KC, S.; Dhungana, R. K.; Shrestha, B.; Thapa, S.; Khanal, N.; Basnet, P.; Lebrun, R. W.; Giri, R. J. Am. Chem. Soc. 2018, 140, 9801.
[52] Chierchia, M.; Xu, P.; Lovinger, G. J.; Morken, J. P. Angew. Chem. Int. Ed. 2019, 58, 14245.
[53] García-Domínguez, A.; Li, Z.; Nevado, C. J. Am. Chem. Soc. 2017, 139, 6835.
[54] Shu, W.; García-Domínguez, A.; Quirós, M. T.; Mondal, R.; Cárdenas, D. J.; Nevado, C. J. Am. Chem. Soc. 2019, 141, 13812.
[55] (a) Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L. Org. Lett. 2019, 21, 4771. (b) García-Domínguez, A.; Mondal, R.; Nevado, C. Angew. Chem. Int. Ed. 2019, 58, 12286. (c) Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 20069.
[56] Derosa, J.; Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 10657.
[57] Derosa, J.; van der Puyl, V. A.; Tran, V. T.; Liu, M.; Engle, K. M. Chem. Sci. 2018, 9, 5278.
[58] (a) Nattmann, L.; Saeb, R.; Nöthling, N.; Cornella, J. Nat. Catal. 2020, 3, 6. (b) Tran, V. T.; Li, Z.-Q.; Apolinar, O.; Derosa, J.; Joannou,. W. V.; Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M. Angew. Chem. Int. Ed. 2020, 59, 7409.
Outlines

/