Article

Zeolite Stabilized Isolated Molybdenum Species for Catalytic Oxidative Desulfurization

  • Zhang Mengting ,
  • Yan Tingting ,
  • Dai Weili ,
  • Guan Naijia ,
  • Li Landong
Expand
  • School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

Received date: 2020-08-04

  Online published: 2020-09-18

Supported by

Project supported by the Municipal Natural Science Foundation of Tianjin (Nos. 18JCJQJC47400, 18JCZDJC37400) and Fundamental Research Funds for the Central Universities, Nankai University.

Abstract

A series of Mo/beta zeolite samples with different Mo loadings were prepared via a two-step post-synthesis strategy using dealuminated Si-beta and bis(cyclopentadienyl) molybdenum dichloride (Cp2MoCl2) as precursors. The as-prepared samples were thoroughly characterized by a series of techniques including X-ray diffraction (XRD), the diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), temperature-programmed reduction by hydrogen (H2-TPR), high-resolution transmission electron microscopy (HR-TEM) and scanning transmission electron microscopy (STEM), Mo the K-edge X-ray absorption near edge structure (XANES), the extended X-ray absorption fine structure (EXAFS) and Raman spectroscopy. Dioxo (Si-O)2Mo(=O)2 species were determined to be the dominant Mo species confined and stabilized in structure of beta zeolite. The as-prepared Mo/beta samples were applied as potential catalysts in the reaction of oxidative desulfurization (ODS) from model fuel. The effects of catalyst supports, molybdenum loadings, reaction temperature, and sulfur substrates on the ODS performance were investigated in detail, and typical kinetic analyses of dibenzothiophene (DBT) oxidation were conducted, giving an apparent activation energy value of 50.2 kJ/mol. Owing to the structure confinement, Mo species can be well stabilized within the pores and cages of beta zeolite, and the distribution of which can be regulated by controlling the anchoring sites in the zeolite support to derive well-defined isolated dioxo Mo species. 1% Mo/beta exhibited remarkable oxidative desulfurization efficiency in the removal of heterocyclic sulfur compounds like DBT from the model fuel among all the catalysts tested. Typically, 99.3% of DBT could be oxidized to the corresponding sulfone within 120 min at 333 K. Moreover, 1% Mo/beta showed good recyclability and no obvious activity loss could be observed in five recycles, in significant contrast to poor cyclic stability of traditional Mo/SiO2 catalyst caused by the significant loss of Mo species during desulfurization reaction. Therefore, Mo/beta might be developed as efficient and stable ODS catalysts for future applications under mild reaction conditions.

Cite this article

Zhang Mengting , Yan Tingting , Dai Weili , Guan Naijia , Li Landong . Zeolite Stabilized Isolated Molybdenum Species for Catalytic Oxidative Desulfurization[J]. Acta Chimica Sinica, 2020 , 78(12) : 1404 -1410 . DOI: 10.6023/A20080346

References

[1] Eßer, J.; Wasserscheid, P.; Jess, A. Green Chem. 2004, 6, 316.
[2] Ismagilov, Z.; Yashnik, S.; Kerzhentsev, M.; Parmon, V.; Bourane, A.; Al-Shahrani, F. M.; Hajji, A. A.; Koseoglu, O. R. Catal. Rev. 2011, 53, 199.
[3] Yang, X.-D.; Wang, X.-M.; Gao, S.-B. Acta Chim. Sinica 2017, 75, 479(in Chinese). (杨晓东, 王新苗, 高善彬, 化学学报, 2017, 75, 479.)
[4] Li, X.-F.; Chen, L.; Xu, S.-C.; Zhao, W.-B. Acta Chim. Sinica 2019, 77, 1287(in Chinese).(李雪霏, 陈玲, 许胜超, 赵文波, 化学学报, 2019, 77, 1287.)
[5] Zhang, T.; Guo, C.; Wei, S.-X. Acta Chim. Sinica 2018, 76, 62(in Chinese). (张田, 郭琛, 魏淑贤, 化学学报, 2018, 76, 62.)
[6] Safa, M. A.; Bouresli, R.; Al-Majren, R.; Al-Shamary, T.; Ma, X. L. Fuel 2019, 239, 24.
[7] Srivastava, V. C. RSC Adv. 2012, 2, 759.
[8] Yang, G.-X.; Zhang, X.-Y.; Yang, H.-L.; Ma, J.-T. J. Colloid Interface Sci. 2018, 532, 92.
[9] Zhang, D.-W.; Tao, H.-Z.; Yao, C.-Y.; Sun, Z.-S. Chem. Eng. Sci. 2017, 174, 203.
[10] Xiao, X.; Zhong, H.; Zheng, C.-X.; Lu, M.-L.; Zuo, X.-X.; Nan, J.-M. Chem. Eng. J. 2016, 304, 908.
[11] Prins, R.; Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis, Vol. 6, Wiley-VCH, Weinheim, 2008, pp. 2695-2718.
[12] Chen, K.; Liu, N.; Zhang, M.-H.; Wang, D.-H. Appl. Catal. B 2017, 212, 32.
[13] Chen, K.; Zhang, X.-M.; Yang, X.-F.; Jiao, M.-G.; Zhen, Z.; Zhang, M.-H.; Wang, D.-H; Bu, X.-H. Appl. Catal. B 2018, 238, 263.
[14] Ghubayra, R.; Nuttall, C.; Hodgkiss, S.; Craven, M.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. B 2019, 253, 309.
[15] Zhang, Y.; Wang, R. Appl. Catal. B 2018, 234, 247.
[16] Bryzhina, A. A.; Gantmanb, M. G.; Buryak, A. K.; Tarkhanova, I. G. Appl. Catal. B 2019, 257,117938.
[17] Zhang, X.-M.; Zhang, Z.-H.; Zhang, B.-H.; Yang, X.-F.; Chang, X.; Zhou, Z.; Zhang, D.-H.; Zhang, M.-H.; Bu, X.-H. Appl. Catal. B 2019, 256, 117804.
[18] Kulikov, L. A.; Akopyan, A. V.; Polikarpova, P. D.; Zolotukhina, A. V.; Maximov, A. L.; Anisimov, A. V.; Karakhanov, E. A. Ind. Eng. Chem. Res. 2019, 58, 20562.
[19] Wu, L.; Miao, G.; Dai, X.; Dong, L.; Li, Z.; Xiao, J. Energy Fuel. 2019, 33, 7287.
[20] Gonzalez, J.; Wang, J. A.; Chen, L.; Manriquez, M. E.; Dominguez, J. M. J. Phys. Chem. C 2017, 121, 23988.
[21] Mokhtari, B.; Akbari, A.; Omidkhah, M. Energy Fuel. 2019, 33, 7276.
[22] Yao, X.-Y.; Wang, C.; Liu, H.; Li, H.-P.; Wu, P.-W.; Fan, L.; Li, H.-M.; Zhu, W.-S. Ind. Eng. Chem. Res. 2019, 58, 863.
[23] Wang, J.-S.; Wu, W.-P.; Ye, H.-Y.; Zhao, Y.-H.; Wang, W.-H.; Bao, M. RSC Adv. 2017, 7, 44827.
[24] Hou, L.-P.; Zhao, R.-X.; Li, X.-P.; Gao, X.-H. Appl. Surf. Sci. 2018, 434, 1200.
[25] Grünert, W.; Stakheev, A. Y.; Morke, W.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. J. Catal. 1992, 135, 269.
[26] Grünert, W.; Stakheev, A. Y.; Morke, W.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. J. Catal. 1992, 135, 287.
[27] Ookoshi, T.; Onaka, M. Chem. Commun. 1998, 21, 2399.
[28] Handzlik, J.; Ogonowski, J. Catal. Lett. 2003, 88, 119.
[29] Li, X.; Zhang, W.; Liu, S.; Han, X.; Xu, L.; Bao, X. J. Mol. Catal. A 2006, 250, 94.
[30] Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Catal. 2007, 250, 55.
[31] Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Phys. Chem. C 2008, 112, 5955.
[32] Handzlik, J.; Sautet, P. J. Catal. 2008, 256, 1.
[33] Debecker, D. P.; Bouchmella, K.; Poleunis, C.; Eloy, P.; Bertrand, P.; Gaigneaux, E. M.; Mutin, P. M. Chem. Mater. 2009, 21, 2817.
[34] Debecker, D. P.; Schimmoeller, B.; Stoyanova, M.; Poleunis, C.; Bertrand, P.; Rodemerck, U.; Gaigneaux, E. M. J. Catal. 2011, 277, 154.
[35] Debecker, D. P.; Stoyanova, M.; Colbeau-Justin, F.; Rodemerck, U.; Boissière, C.; Gaigneaux, E. M.; Sanchez C. Angew. Chem. Int. Ed. 2012, 51, 2129.
[36] Lin, C.; Tao, K.; Yu, H.; Hua, D. Catal. Sci. Technol. 2014, 4, 4010.
[37] Chen, K.; Xie, S.; Iglesia, E.; Bell, A. T. J. Catal. 2000, 189, 421.
[38] Abello, M. C.; Gomez, M. F.; Casella, M.; Ferretti, O. A.; Bañares, M. A.; Fierro, J. L. G. Appl. Catal. A 2003, 251, 435.
[39] Heracleous, E.; Lee, A. F.; Vasalos, I. A.; Lemonidou, A. A. Catal. Lett. 2003, 88, 47.
[40] Heracleous, E.; Vakros, J.; Lemonidou, A. A.; Kordulis, C. Catal. Today 2004, 91-92, 289.
[41] Christodoulakis, A.; Heracleous, E.; Lemonidou, A. A.; Boghosian, S. J. Catal. 2006, 242, 16.
[42] Christodoulakis, A.; Boghosian, S. J. Catal. 2008, 260, 178.
[43] Chung, J. S.; Miranda, R.; Bennett, C. O. J. Catal. 1988, 114, 398.
[44] Banares, M.; Hu, H.; Wachs, I. E. J. Catal. 1994, 150, 407.
[45] Jehng, J. M.; Hu, H. C.; Gao, X. T.; Wachs, I. E. Catal. Today 1996, 28, 335.
[46] Liu, H.; Cheung, P.; Iglesia, E. J. Catal. 2003, 217, 222.
[47] Liu, H.; Cheung, P.; Iglesia, E. J. Phys. Chem. B 2003, 107, 4118.
[48] Xu, Y.; Lin, L. Appl. Catal. A 1999, 188, 53.
[49] Ma, D.; Shu, Y.; Bao, X.; Xu, Y. J. Catal. 2000, 189, 314.
[50] Liu, H.; Shen, W.; Bao, X.; Xu, Y. J. Mol. Catal. A 2006, 244, 229.
[51] Tessonnier, J. P.; Louis, B.; Rigolet, S.; Ledoux, M. J.; Pham-Huu, C. Appl. Catal. A 2008, 336, 79.
[52] Gao, J.; Zheng, Y.; Jehng, J.-M.; Tang, Y.; Wachs, I. E.; Podkolzin, S. G. Science 2015, 348, 686.
[53] Martínez, A.; Peris, E. Appl. Catal. A 2016, 515, 32.
[54] Mestl, G.; Srinivasan, T. K. K. Catal. Rev. Sci. Eng. 1998, 40, 451.
[55] Chempath, S.; Zhang, Y.; Bell, A. T. J. Phys. Chem. C 2007, 111, 1291.
[56] Williams, C. C.; Ekerdt, J. G.; Jehng, J. M.; Hardcastle, F. D.; Turek, A. M.; Wachs, I. E. J. Phys. Chem. 1991, 95, 8781.
[57] Radhakrishnan, R.; Reed, C.; Oyama, S. T.; Seman, M.; Kondo, J. N.; Domen, K.; Ohminami, Y.; Asakura, K. J. Phys. Chem. B 2001, 105, 8519.
[58] Tian, H.; Roberts, C. A.; Wachs, I. E. J. Phys. Chem. C 2010, 114, 14110.
[59] Thielemann, J. P.; Ressler, T.; Walter, A.; Tzolova-Müller, A.; Hess, C. Appl. Catal. A 2011, 399, 28.
[60] Tsilomelekis, G.; Boghosian, S. Catal. Sci. Technol. 2013, 3, 1869.
[61] Tang, B.; Dai, W.-L.; Sun, X.-M.; Guan, N.-J.; Li, L.-D.; Hunger, M. Green Chem. 2014, 14, 2281.
[62] Tang, B.; Dai, W.-L.; Wu, G.-J.; Guan, N.-J.; Li, L.-D.; Hunger, M. ACS Catal. 2014, 4, 2801.
[63] Tang, B.; Dai, W.-L.; Sun, X.-M.; Wu, G.-J.; Guan, N.; Hunger, M.; Li, L.-D. Green Chem. 2015, 17, 1744.
[64] Song, S.; Wu, G.-J.; Dai, W.-L.; Guan, N.-J.; Li, L.-D. Catal. Sci. Technol. 2016, 6, 8325.
[65] Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537.
[66] Srebowata, A.; Baran, R.; Lomot, D.; Lisovytskiy, D.; Onfroy, T.; Dzwigaj, S. Appl. Catal. B 2014, 147, 208.
[67] Li, P.; Liu, G.; Wu, H.; Liu, Y.; Jiang, J.; Wu, P. J. Phys. Chem. C 2011, 115, 3663.
[68] Dijkmans, J.; Gabriëls, D.; Dusselier, M.; Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B. F. Green Chem. 2013, 15, 2777.
[69] Hammond, C.; Conrad, S.; Hermans, I. Angew. Chem. Int. Ed. 2012, 51, 11736.
[70] Higashimoto, S.; Hu, Y.; Tsumura, R.; Iino, K.; Matsuoka, M.; Yamashita, H.; Shul, Y. G.; Che, M.; Anpo, M. J. Catal. 2005, 235, 272.
[71] Verbruggen, N. F. D.; Knözinger, H. Langmuir 1994, 10, 3148.
[72] Amakawa, K.; Sun, L.; Guo, C.; Hävecker, M.; Kube, P.; Wachs, I. E.; Lwin, S.; Frenkel, A. I.; Patlolla, A.; Hermann, K.; Schlögl, R.; Trunschke, A. Angew. Chem. Int. Ed. 2013, 52, 13553.
[73] Dzwigaj, S.; Millot, Y.; Krafft, J. M.; Popovych, N.; Kyriienko, P. J. Phys. Chem. C 2013, 117, 12552.
[74] Fournier, M.; Louis, C.; Che, M.; Chaquin, P.; Masure, D. J. Catal. 1989, 119, 400.
[75] Seyedmonir, S. R.; Howe, R. F. J. Catal. 1988, 110, 216.
[76] Irurzun, V. M.; Tan, Y.; Resasco, D. E. Chem. Mater. 2009, 21, 2238.
[77] Tauc, J. Amorphous and Liquid Semiconductors, Plenum, London, 1974.
[78] Bazyari, A.; Khodadadi, A. A.; Mamaghani, A. H.; Beheshtian, J.; Thompson, L.; Mortazavi, Y. Appl. Catal. B 2016, 180, 65.
[79] Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.-H.; Ishihara, A.; Imai, T.; Kabe, T. Energy Fuels 2000, 14, 1232.
[80] Ghubayra, R.; Nuttall, C.; Hodgkiss, S.; Craven, M.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. B 2019, 253, 309.
[81] Mokhtari, B.; Akbari, A.; Omidkhah, M. Energy Fuels 2019, 33, 7276.
Outlines

/