Polymorphism-Dependent Emission of Nonaromatic Luminophores
Received date: 2020-08-15
Online published: 2020-09-18
Supported by
the National Natural Science Foundation of China(51822303); the Natural Science Foundation of Shanghai(20ZR1429400)
Recently, nonconventional luminophores have received increasing attention, owing to their fundamental importance, advantages in outstanding biocompatibility, easy preparation, environmental friendliness and potential applications in sensing, imaging, encryption, etc. In order to provide more information about relationship among molecular conformation, molecular packing and emission, and moreover, to guide the design of nonconventional luminophores, molecules with definite structures and explicit molecular packing are highly desired. In this contribution, we report two nonconventional luminophores, namely F-MA and F-MI, consisting of carbonyls (C=O), electron-rich heteroatoms (O/N), and unsaturated C=C subgroups. They are nonluminous in dilute solutions while being emissive in concentrated ones. Furthermore, through crystallization in different solvents, polymorphs of both compounds with various emission colors along with distinct room temperature phosphorescence (RTP) are successfully obtained. Under 312 nm UV irradiation, three polymorphs of F-MA emit bluish-violet, blue and white lights, accompanying photoluminescence (PL) and RTP quantum efficiencies ( Φ c/ Φ p) of 10.6%/1.8%, 9.4%/2.1% and 2.9%/1.7%, respectively. To acquire more efficient emission, hydrogen bonds are introduced via amidation of F-MA, leading to the target compound F-MI with strikingly improved PL performance. Notably, F-MI is also polymorphic, whose Φ c and Φ p are of up to 17.0% and 4.8%, respectively. Meanwhile, the RTP lifetimes of F-MI polymorphs are significantly prolonged by 10- to 56-fold, as compared with their corresponding F-MA counterparts. The above PL properties can well be rationalized by the clustering-triggered emission (CTE) mechanism, namely through-space electronic delocalization of π and n electrons among different molecules in concentrated solutions or crystals alongside with sufficiently rigidified conformations is accountable for the emission, which is also verified by single crystal analysis and theoretical calculation. Besides, the noticeable RTP emission should be ascribed to the presence of C=O and heteroatoms and the clustering of such subgroups, which are ready to enhance spin-orbit coupling (SOC) and subsequent intersystem crossing transitions with effective through-space conjugation. Surprisingly, subtle changes caused by trace solvents in molecular conformations and packing modes significantly impact on intra/intermolecular interactions, which alter the relative intensity of singlet (fluorescence) and triplet (RTP) emissions, thus resulting in polymorphism-dependent emission colors. For these unorthodox luminescent molecules, their PL properties of polymorphs will deepen the understanding of the relationship between subtle structure variation and emission, thus enlightening further luminescent mechanism understanding and future rational design of novel nonconventional luminophores.
Yueying Lai , Zihao Zhao , Shuyuan Zheng , Wang Zhang Yuan . Polymorphism-Dependent Emission of Nonaromatic Luminophores[J]. Acta Chimica Sinica, 2021 , 79(1) : 93 -99 . DOI: 10.6023/A20080368
[1] | Wang, Z.; Cai, J.; Zhang, M.; Zheng, C.; Ji, B. Acta Chim. Sinica 2019, 77, 263 . (in Chinese) |
[1] | 王志强, 蔡佳林, 张明, 郑才俊, 吉保明, 化学学报, 2019, 77, 263. |
[1] | Zhou, J.; Liu, L.; Zhong, C.; Fu, Y.; Song, Z.; Peng, Y. Chin. J. Org. Chem. 2019, 39, 1444 . (in Chinese) |
[1] | 周佳, 刘璐, 钟成, 傅杨, 宋智彬, 彭以元, 有机化学, 2019, 39, 1444. |
[1] | Chu, Y.; Xie, Z.; Zhuang, D.; Yue, Y.; Yue, Y.; Shi, W.; Feng S. Chin. J. Chem. 2019, 37, 1216. |
[2] | Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan, W.Z.; Zhang, Y.; Sun, J.; Tang, B.Z. Sci. Chin. Chem. 2013, 56, 1178;. |
[2] | Chen, X.; Wang, Y.; Zhang, Y.; Yuan, W.Z. Prog. Chem. 2019, 31, 1560 . (in Chinese) |
[2] | 陈晓红, 王允中, 张永明, 袁望章, 化学进展, 2019, 31, 1560. |
[2] | Tomalia, D.A.; Klajnert M. B.; Johnson, K.A.M.; Brinkman, H.F.; Janaszewska, A.; Hedstrand, D.M. Prog. Polym. Sci. 2019, 90, 35;. |
[2] | Zhang, H.; Zhao, Z.; McGonigal, P.R.; Ye, R.; Liu, S.; Lam, J.W.Y.; Kwok, R.T.K.; Yuan, W.Z.; Xie. J.; Rogach, A.L.; Tang, B.Z. Mater. Today 2020, 32, 275;. |
[2] | Tao, S.; Zhu, S.; Feng, T.; Zheng, C.; Yang, B. Angew. Chem., Int. Ed. 2020, 59, 9826. |
[3] | Zhou, Q.; Yang, T.; Zhong, Z.; Kausar, F.; Wang, Z.; Zhang, Y.; Yuan, W.Z. Chem. Sci. 2020, 11, 2926;. |
[3] | Zheng, S.; Hu, T.; Bin, X.; Wang, Y.; Yi, Y.; Zhang, Y.; Yuan, W.Z. ChemPhysChem 2020, 21, 36;. |
[3] | Yan, J.; Zheng, B.; Pan, D.; Yang, R.; Xu, Y.; Wang, L.; Yang, M. Polym. Chem. 2015, 6, 6133;. |
[3] | Wang, D.; Wang, X.; Xu, C.; Ma, X. Sci. Chin. Chem. 2019, 62, 430;. |
[3] | Wang, Q.; Li, B.; Cao, H.; Jiang, X.; Kong, X.Z. Chem. Eng. J. 2020, 388, 124182;. |
[3] | Zhou, Q.; Wang, Z.; Dou, X.; Wang, Y.; Liu, S.; Zhang, Y.; Yuan, W.Z. Mater. Chem. Front. 2019, 3, 257. |
[4] | Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Mater. Chem. Front. 2018, 2, 2124;. |
[4] | Zheng, S.; Zhu, T.; Wang, Y.; Yang, T.; Yuan, W.Z. Angew. Chem., Int. Ed. 2020, 59, 10018;. |
[4] | Wang, Y.; Tang, S.; Wen, Y.; Zheng, S.; Yang, B.; Yuan, W.Z. Mater. Horiz. 2020, 7, 2105;. |
[4] | Yuan, L.; Yan, H.; Bai, L.; Niu, S.; Du, Y.; Huang, W. Polym. Bull. 2018, 3, 24 . (in Chinese) |
[4] | 原璐瑶, 颜红侠, 白利华, 牛松, 杜玉群, 黄为, 高分子通报, 2018, 3, 24. |
[4] | Yang, J.G.; Li, Y.; Wang, X.A.; Wang, D.; Sun, Y.W.; Wang, J.Q.; Xu, H. Acta Chim. Sinica 2019, 77, 1279 . (in Chinese) |
[4] | 杨靖鸽, 李阳, 王小艾, 王栋, 孙亚伟, 王继乾, 徐海, 化学学报, 2019, 77, 1279. |
[5] | Wang, D.; Imae, T. J. Am. Chem. Soc. 2004, 126, 13204. |
[6] | Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.Z.; Zhang, Y. Small 2016, 12, 6586. |
[7] | Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan, W.Z.; Zhang, Y. Sci. China Chem. 2018, 61, 351. |
[8] | Wang, Q.; Dou, X.; Chen, X.; Zhao, Z.; Wang, S.; Wang, Y.; Sui, K.; Tan, Y.; Gong, Y.; Zhang, Y.; Yuan, W.Z. Angew. Chem., Int. Ed. 2019, 58, 12667. |
[9] | Bai, L.; Yan, H.; Bai, T.; Guo, L.; Lu, T.; Zhao, Y.; Li, C. Biomacromolecules 2020, 21, 3274;. |
[9] | Wang, S.; Wu, D.; Yang, S.; Lin, Z.; Ling, Q. Mater. Chem. Front. 2020, 4, 1198. |
[10] | Lee, W.I.; Bae, Y.; Bard. A. J. J. Am. Chem. Soc. 2004, 126, 8358;. |
[10] | Wang, D.; Imae, T.; Miki. M. J. Colloid Interface Sci. 2007, 306, 222. |
[11] | Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Macromolecules 2015, 48, 476. |
[12] | Shukla, A.; Mukherjee, S.; Sharma, S.; Agrawal, V.; Kishan, K.V.R.; Guptasarma, P. Arch. Biochem. Biophys. 2004, 428, 144. |
[13] | Pinotsi, D.; Grisanti, L.; Mahou, P.; Gebauer, R.; Kaminski, C.F.; Hassanali, A.; Schierle, G.S.K. J. Am. Chem. Soc. 2016, 138, 3046. |
[14] | Zhu, S.; Song, Y.; Shao, J.; Zhao, X.; Yang, B. Angew. Chem., Int. Ed. 2015, 54, 14626. |
[15] | He, Z.; Li, W.; Chen, G.; Zhang, Y.; Yuan, W.Z. Chin. Chem. Lett. 2019, 30, 135;. |
[15] | Wang, K.; Xie, Y.; Liu, M.; Tao, W.; Zhang, H.; Huang, M.; You, J.; Liu, Y.; Li, Y.; Li, Z.; Dong, Y.Q. Adv. Optical Mater. 2020, 8, 2000436;. |
[15] | Liu, X.; Jia, Y.; Jiang, H.; Gao G.; Xia M. Acta Chim. Sinica 2019, 77, 1194 . (in Chinese) |
[15] | 刘笑静, 贾彦荣, 江豪, 高贯雷, 夏敏, 化学学报, 2019, 77, 1194. |
[15] | Huang, G.; Jiang, Y.; Yang, S.; Li, B.S.; Tang, B.Z. Adv. Funct. Mater. 2019, 29, 1900516;. |
[15] | Zhu, Ji.; Li, C.; Chen, P.; Ma, Z.; Zou, B.; Niu, L.; Cui, G.; Yang Q. Mater. Chem. Front. 2020, 4, 176. |
[16] | Zhang, G.; Lu, J.; Sabat, M.; Fraser, C.L. J. Am. Chem. Soc. 2010, 132, 2160;. |
[16] | Yang, J.; Ren, Z.; Chen, B.; Fang, M.; Zhao, Z.; Tang, B.Z.; Peng, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9242;. |
[16] | Yan, D.; Evans, D.G. Mater. Horiz. 2014, 1, 46;. |
[16] | Wang, K.; Zhang, H.; Chen, S.; Yang, G.; Zhang, J.; Tian, W.; Su, Z.; Wang, Y. Adv. Mater. 2014, 26, 6168;. |
[16] | Li, W.; Huang, Q.; Mao, Z.; Zhao, J.; Wu, H.; Chen, J.; Yang, Z.; Li, Y.; Yang, Z.; Zhang, Y.; Aldred, M.P.; Chi, Z. Angew. Chem., Int. Ed. 2020, 59, 3739;. |
[16] | Liu, M.L.; Wu, Q.; Shi, H.F.; An, Z.F.; Huang, W. Acta Chim. Sinica 2018, 76, 246 . (in Chinese) |
[16] | 刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246. |
[17] | Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9, 840;. |
[17] | Wu, H.; Chi, W.; Baryshnikov, G.; Wu, B.; Gong, Y.; Zheng, D.; Li, X.; Zhao, Y.; Liu, X.; Ågren, H.; Zhu, L. Angew. Chem., Int. Ed. 2019, 58, 4328;. |
[17] | Lu, B.; Liu, S.; Yan, D. Chin. Chem. Lett. 2019, 30, 1908. |
[18] | Wang, Y.; Zhao, Z.; Yuan, W.Z. ChemPlusChem 2020, 85, 1065. |
[19] | Yuan, L.; Yan, H.; Bai, L.; Bai, T.; Zhao, Yan.; Wang, L.; Feng, Y. Macromol. Rapid Commun. 2019, 40, 1800658;. |
[19] | Feng, Y.; Yan, H.; Ding, F.; Bai, T.; Nie, Y.; Zhao, Y.; Feng, W.; Tang, B.Z. Mater. Chem. Front. 2020, 4, 1375. |
[20] | Shang, C.; Zhao, Y.; Wei, N.; Zhuo, H.; Shao, Y.; Wang H. Macromol. Chem. Phys. 2019, 220, 1900324;. |
[20] | Liu, B.; Zhang, H.; Liu, S.; Sun, J.; Zhang, X.; Tang, B.Z. Mater. Horiz. 2020, 7, 987. |
[21] | Yuan, W.Z.; Shen, X.Y.; Zhao, H.; Lam, J.W.Y.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q. J. Phys. Chem. C 2010, 114, 6090;. |
[21] | Yang, J.; Chi, Z.; Zhu, W.; Tang, B.Z.; Li, Z. Sci. Chin. Chem. 2019, 62, 1090;. |
[21] | Xu, S.; Chen, R.; Zheng, C.; Huang, W. Adv. Mater. 2016, 28, 9920;. |
[21] | Gan, N.; Wang, X.; Ma, H.; Lv, A.; Wang, H.; Wang, Q.; Gu, M.; Cai, S.; Zhang, Y.; Fu, L.; Zhang, M.; Dong, C.; Yao, W.; Shi, H.; An, Z.; Huang, W. Angew. Chem., Int. Ed. 2019, 58, 14140;. |
[21] | Zhang, L.; Li, M.; Gao, Q.Y.; Chen, C.F. Chin. J. Org. Chem. 2020, 40, 516 . (in Chinese) |
[21] | 张亮, 李猛, 高庆宇, 陈传峰, 有机化学, 2020, 40, 516. |
[22] | CCDC numbers of the crystals: MA-A (2022799), MA-B (2022804), MA-C (2022803), MI-A (2022802), MI-B (2022801), MI-C (2022800) |
[23] | Shang, C.; Zhao, Y.; Long, J.; Ji, Y.; Wang, H. J. Mater. Chem. C 2020, 8, 1017;. |
[23] | Wang, J.; Huang, Z.Z.; Ma, X.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 9928;. |
[23] | Shang, C.; Wei, N.; Zhuo, H.; Shao, Y.; Zhang, Q.; Zhang, Z.; Wang, H. J. Mater. Chem. C 2017, 5, 8082;. |
[23] | Yang, Z.; Ubba, E.; Huang, Q.; Mao, Z.; Li, W.; Chen, J.; Zhao, J.; Zhang, Y.; Chi, Z. J. Mater. Chem. C 2020, 8, 7384. |
[24] | Liu, B.; Chu, B.; Wang, Y.; Chen, Z.; Zhang, X. Adv. Optical Mater. 2020, 1902176. |
[25] | Ma, X.; Xu, C.; Wang, J.; Tian, H. Angew. Chem., Int. Ed. 2018, 57, 10854;. |
[25] | Yan Z. A.; Zou, L.; Ma, X.Chin. J. Org. Chem. 2020, 40, 1814 . (in Chinese) |
[25] | 严子昂, 邹雷, 马骧, 有机化学, 2020, 40, 1814. |
[25] | Zhang, T.; Ma, X.; Wu, H.W.; Zhu, L.L.; Zhao, Y.L.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 11206. |
[26] | Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016 . |
/
〈 |
|
〉 |