Article

Synthesis and Reactivity Studies of Irida-carbolong Complexes

  • Jinhua Li ,
  • Qingde Zhuo ,
  • Kaiyue Zhuo ,
  • Dafa Chen ,
  • Haiping Xia
Expand
  • a Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055)
    (
    b Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2020-08-26

  Online published: 2020-09-27

Supported by

the National Natural Science Foundation of China(U1705254); the National Natural Science Foundation of China(21931002); the National Natural Science Foundation of China(21871068); the Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)

Abstract

The term “carbolong complexes” represents a series of novel π-conjugating aromatic frameworks, which are formed by the chelation of a carbon chain (carbolong ligand) containing not less than 7 carbon atoms with a transition metal fragment. Carbolong complexes show unique photophysical properties, thus exhibiting promising potential applications. Inspired by the efficient strategies for the construction of Os-, Ru-, and Rh-carbolong complexes by the reactions of multiynes with simple metal sources, we describe here the reasonable design of two multiyne compounds 1 and 2, which could react with the iridium precursor [Ir(CH3CN)(CO)(PPh3)2]BF4 ( 3) to produce the irida-carbolong complexes 4 and 5 with a large π conjugation system via a “one-pot” method, respectively. This is the first time to expand the carbolong complex to iridium. In addition, the ligand substitution reactions of 4 and 5have been investigated. Treatment of corresponding ligands with 4 and 5 resulted in the generation of several new irida-carbolong complexes 6~ 9. All the prepared irida-carbolong complexes were fully characterized by NMR and HRMS. The molecular structures of the irida-carbolong complexes 4~ 8 were further confirmed by single crystal X-ray diffractions. A possible mechanism was proposed for the formation of the irida-carbolong complexes on the basis of the X-ray characterization of the key intermediate Int 2. Due to the unique large π conjugation system, all the synthesized irida-carbolong complexes exhibit remarkable absorption properties in the ultraviolet visible region, and some of them even show considerable absorption characteristics in the near infrared region (NIR). The consequently photothermal property investigation indicates that complex 5 has a good NIR photothermal effect: by measuring the temperature of its solution under the NIR laser irradiation (808 nm, 1.0 W•cm -2), the temperature of ethanol/water solution containing 5 (0.1 mg•mL -1) can be increased by nearly 40 ℃ in 10 min, providing numerous possibilities for the follow-up application research based on carbolong complexes.

Cite this article

Jinhua Li , Qingde Zhuo , Kaiyue Zhuo , Dafa Chen , Haiping Xia . Synthesis and Reactivity Studies of Irida-carbolong Complexes[J]. Acta Chimica Sinica, 2021 , 79(1) : 71 -80 . DOI: 10.6023/A20080392

References

[1]
Selected reviews: (a) He, G.; Xia, H.; Jia, G. Chin. Sci. Bull. 2004, 49, 1543.
[1]
Landorf, C.W.; Haley, M.M. Angew. Chem., Int. Ed. 2006, 45, 3914.
[1]
Chen, J.; Jia, G. Coord. Chem. Rev. 2013, 257, 2491.
[1]
Cao, X.-Y.; Zhao, Q.; Lin, Z.; Xia, H. Acc. Chem. Res. 2014, 47, 341.
[1]
Frogley, B.J.; Wright, L.J. Coord. Chem. Rev. 2014, 270-271, 151.
[1]
Fernández, I.; Frenking, Gernot.; Merino, G. Chem. Soc. Rev. 2015, 44, 6452.
[1]
Frogley, B.J.; Wright, L.J. Chem. -Eur. J. 2018, 24, 2025.
[1]
Hua, Y.; Zhang, H.; Xia, H. Chin. J. Org. Chem. 2018, 38, 11 . (in Chinese)
[1]
华煜辉, 张弘, 夏海平, 有机化学, 2018, 38, 11.
[2]
Selected reviews: (a) Jia, G.Acc. Chem. Res. 2004, 37, 479.
[2]
Chen, J.; He, G.; Jia, G. Chin. J. Org. Chem. 2013, 33, 792 . (in Chinese)
[2]
陈江溪, 何国梅, 贾国成, 有机化学, 2013, 33, 792.
[2]
Jia, G. Organometallics 2013, 32, 6852.
[3]
Paneque, M.; Posadas, C.M.; Poveda, M.L.; Rendón, N.; Salazar, V.; Oñate, E.; Mereiter, K. J. Am. Chem. Soc. 2003, 125, 9898.
[3]
Paneque, M.; Posadas, C.M.; Poveda, M.L.; Rendón, N.; Santos, L.L.; Álvarez, E.; Salazar, V.; Mereiter, K.; Oñate, E. Organometallics 2007, 26, 2403.
[3]
Vivancos, Á.; Hernández, Y. A. Paneque, M.; Poveda, M. L.; Salazar, V.; Álvarez, E. Organometallics 2015, 34, 177.
[4]
He, G.; Chen, J.; Xia, H.; Sci. Bull. 2016, 61, 430.
[4]
Zhou, X.; Zhang, H. Chem. Eur. J. 2018, 24, 8962.
[4]
Wang, H.; Zhou, X.; Xia, H. Chin. J. Chem. 2018, 36, 93.
[5]
Wei, J.; Zhang, W.; Xi, Z. Chem. Sci. 2018, 9, 560.
[6]
Zhang, Y.; Wei, J.; Chi, Y.; Zhang, X.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 5309.
[6]
Liu, L.; Zhu, M.; Yu, H.-T.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 13688.
[6]
Zhang, Y.; Wei, J.; Zhu, M.; Chi, Y.; Zhang, W.-X.; Ye, S.; Xi, Z. Angew. Chem., Int. Ed. 2019, 58, 9625.
[7]
Wei, J.; Zhang, Y.; Chi, Y.; Liu, L.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2016, 138, 60.
[7]
An, K.; Shen, T.; Zhu, J. Organometallics 2017, 36, 3199.
[7]
Huang, Z.; Zhang, Y.; Zhang, W.-X.; Xi, Z. Organometallics 2019, 38, 2807.
[8]
Lv, Z.-J.; Huang, Z.; Shen, J.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2019, 141, 20547.
[8]
Wang, K.; Zhou, X. Chin. J. Org. Chem. 2020, 40, 1084 . (in Chinese)
[8]
王凯, 周锡庚, 有机化学, 2020, 40, 1084.
[9]
Frogley, B.J.; Wright, L. Angew. Chem., Int. Ed. 2017, 56, 143.
[9]
Ruan, W.; Leung, T.-F.; Shi, C.; Lee, K.H.; Sung, H.H.Y.; Williams, I.D.; Lin, Z.; Jia, G. Chem. Sci. 2018, 9, 5944.
[9]
Talavera, M. Peña-Gallego, A. Alonso-Gómez, J.L. Bolaño, S.; Chem. Commun., 2018, 54, 10974.
[9]
Zhang, M.-X.; Xu, Z.; Lu, T.; Yin, J.; Liu, S.H. Chem. Eur. J. 2018, 24, 14891.
[9]
Zhang, M.-X.; Zhang, J.; Jin, X.; Sun, X.; Yin, J.; Hartl, F.; Liu, S.H. Chem. Eur. J. 2018, 24, 18998.
[9]
Hu, Y.X.; Zhang, J.; Wang, X.; Lu, Z.; Zhang, F.; Yang, X.; Ma, Z.; Yin, J.; Xia, H.; Liu, S.H. Chem. Sci. 2019, 10, 10894.
[9]
Chu, Z.; He, G.; Cheng, X.; Deng, Z.; Chen, J. Angew. Chem., Int. Ed. 2019, 58, 9174.
[10]
Zhu, C.; Xia, H. Acc. Chem. Res. 2018, 51, 1691.
[10]
Luo, M.; Hua, Y.; Zhuo, K.; Long, L.; Lin, X.; Deng, Z.; Lin, Z.; Zhang, H.; Chen, D.; Xia, H. CCS Chem. 2020, 2, 758.
[10]
Lin, J.; Xu, Q.; Lin, X.; Hua, Y.; Chen, D.; Ruan, Y.; Zhang, H.; Xia, H. Chin. J. Chem. 2020, 38, 1273.
[11]
Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P.v.R.; Xia, H. Nat. Chem. 2013, 5, 698.
[12]
Zhu, C.; Yang, Y.; Luo, M.; Yang, C.; Wu, J.; Chen, L.; Liu, G.; Wen, T.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 6181.
[12]
Yang, C.; Lin, G.; Zhu, C.; Pang, X.; Wang, X.; Li, X.; Wang, B.; Xia, H.; Liu, G. J. Mater. Chem. B, 2018, 6, 2528.
[12]
Zhou, X.; Pang, X.; Nie, L.; Zhu, C.; Zhuo, K.; Zhuo, Q.; Chen, Z.; Liu, G.; Zhang, H.; Lin, Z.; Xia, H. Nat. Commun. 2019, 10, 1488.
[13]
Zhu, C.; Yang, C.; Wang, Y.; Lin, G.; Yang, Y.; Wang, X.; Zhu, J.; Chen, X.; Lu, X.; Liu, G.; Xia, H. Sci. Adv. 2016, 6, e1601031/1.
[14]
Li, R.; Lu, Z.; Cai, Y.; Jiang, F.; Tang, C.; Chen, Z.; Zheng, J.; Pi, J.; Zhang, R.; Liu, J.; Chen, Z.-B.; Yang, Y.; Shi, J.; Hong, W.; Xia, H. J. Am. Chem. Soc. 2017, 139, 14344.
[15]
Zhang, H.; Zhao, H.; Zhuo, K.; Hua, Y.; Chen, J.; He, X.; Weng, W.; Xia, H. Polym. Chem. 2019, 10, 386.
[15]
Chen, Y.; Yang, L.; Zheng, W.; Ouyang, P.; Zhang, H.; Ruan, Y.; Weng, W.; He, X.; Xia, H. ACS Macro Lett. 2020, 9, 344.
[16]
Zhuo, Q.; Lin, J.; Hua, Y.; Zhou, X.; Shao, Y.; Chen, S.; Chen, Z.; Zhu, J.; Zhang, H.; Xia, H. Nat. Commun. 2017, 8, 1912.
[17]
Zhuo, Q.; Zhang, H.; Hua, Y.; Kang, H.; Zhou, X.; Lin, X.; Chen, Z.; Lin, J.; Zhuo, K.; Xia, H. Sci. Adv. 2018, 4, eaat0336.
[17]
Li, J.; Kang, H.; Zhuo, K.; Zhuo, Q.; Zhang, H.; Lin, Y.-M.; Xia, H. Chin. J. Chem. 2018, 36, 1156.
[18]
Zhuo, Q.; Zhang, H.; Ding, L.; Lin, J.; Zhou, X.; Hua, Y.; Zhu, J.; Xia, H. iScience 2019, 19, 1214.
[19]
Schröder, F.G.; Sundermeyer, J. Organometallics 2015, 34, 1017.
[19]
Hariharan, P.S.; Mariyatra, M.B.; Mothi, E.M.; Neels, A. Rosair, G.; Anthony, S.P. New. J. Chem. 2017, 41, 4592.
[20]
Bleeke, J.R.; Behm, R. J. Am. Chem. Soc. 1997, 119, 8503.
[20]
Clark, G.R.; Johns, P.M.; Roper, W.R.; Wright, L.J. Organometallics 2008, 27, 451.
[21]
Wu, H.-P.; Ess, D.H.; Lanza, S.; Weakley, T.J.R.; Houk, K.N.; Baldridge, K.K.; Haley, M.M. Organometallics 2007, 26, 3957.
[22]
O'Connor, J.M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9663.
[22]
O'Connor, J.M.; Pu, L.; Chadha, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 543.
[23]
Zhu, C.; Luo, M.; Zhu, Q.; Zhu, J.; Schleyer, P. v R.; Wu, J.I.-C.; Lu, X.; Xia, H. Nat. Commun. 2014, 5, 3265.
[24]
Ilg, K.; Werner, H. Organometallics 2001, 20, 3782.
[24]
Chin, C.S.; Kim, M.; Lee, H.; Noh, S.; Ok, K.M. Organometallics 2002, 21, 4785.
[24]
Torres, O.; Martín, M.; Sola, E. Organometallics 2010, 29, 3201.
[25]
Li, J.; Lin, Y.-M.; Zhang, H.; Chen, Y.; Lin, Z.; Xia, H. Chem. -Eur. J. 2019, 25, 5077.
[25]
Wu, F.; Huang, W.; Zhuo, K.; Hua, Y.; Lin, J.; He, G.; Chen, J.; Nie, L.; Xia, H. Chin. J. Org. Chem. 2019, 39, 1743 . (in Chinese)
[25]
吴凡, 黄文超, 卓凯玥, 华煜晖, 林剑锋, 何国梅, 陈江溪, 聂立铭, 夏海平, 有机化学, 2019, 39, 1743.
[25]
Lu, Z.; Zhu, Q.; Cai, Y.; Chen, Z.; Zhuo, K.; Zhu, J.; Zhang, H.; Xia, H. Sci. Adv. 2020, 6, eaay2535.
[26]
Bedard, T.C.; Moore, J.S. J. Am. Chem. Soc. 1995, 117, 10662.
[27]
Dubé, P.; Toste, F.D. J. Am. Chem. Soc. 2006, 128, 12062.
[28]
Kaiser, R.P.; Hessler, F.; Mosinger, J.; Císařová, I.; Kotora, M. Chem. Eur. J. 2015, 21, 13577.
Outlines

/