Review

Combination of Nanomaterials and Bacteria for Tumor Treatment

  • Cao Mengxuan ,
  • Dai Xiaoguang ,
  • Chen Beibei ,
  • Zhao Nana ,
  • Xu Fu-Jian
Expand
  • State Key Laboratory of Chemical Resource Engineering, College of Material Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2020-07-07

  Online published: 2020-08-10

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFA0201501), National Natural Science Foundation of China (Nos. 51773013 and 51922022), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910010024), and Fundamental Research Funds for the Central Universities (Nos. BHYC1705A and XK1802-2).

Abstract

Nowadays malignant tumors are still one of the disastrous diseases. It is necessary to explore new strategies for the treatment of malignant tumor. Nanomaterials refer to materials with at least one dimension of the three dimensions in the nanometer range (1~100 nm). They show a wide range of applications in tumor treatment while disadvantages of low targeting efficiency, poor tumor penetration and obvious side effects still limit their applications. As a method for tumor treatment, bacterial therapy has a long history. Some facultative anaerobic and obligate anaerobic bacteria and their secretions have the characteristics of targeting hypoxic tumor tissue, strong tumor penetration and stimulating immune responses. After genetically modification or attenuation treatment, it can be used for tumor treatment. However, the safety issues and low therapeutic efficiency still needs to be solved. The combination of nanomaterials and bacteria can complement the limitation of each other, and shows great potential in tumor therapy. On one hand, bacteria could enhance the targeting efficiency of nanomaterials, and decrease the side effects. On the other hand, nanomaterials could help improve the safety and solve the problem of low therapeutic efficiency of bacterial therapy. In this review, the combination of nanomaterials and bacteria is divided into three categories based on the role of bacteria in the treatment. Firstly, the preparation of composites of nanomaterials and bacteria by chemical bonds, electrostatic interaction, and other ways to enhance tumor targeting. Secondly, bacterial enzyme could react with nanomaterials to control the release of drug. Thirdly, secretions of bacteria after plasmids were introduced and outer membrane vesicles secreted by bacteria could be combined with nanomaterials for anti-tumor therapy. The mechanisms of the combination therapy are also discussed. Finally, we summarized and discussed the current challenges, especially the safety of the combination therapy. The prospect of the combination of nanomaterials and bacterial for tumor treatment is also proposed.

Cite this article

Cao Mengxuan , Dai Xiaoguang , Chen Beibei , Zhao Nana , Xu Fu-Jian . Combination of Nanomaterials and Bacteria for Tumor Treatment[J]. Acta Chimica Sinica, 2020 , 78(10) : 1054 -1063 . DOI: 10.6023/A20070295

References

[1] Zhao, N.; Yan, L..; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F. J. Chem. Rev. 2019, 119, 1666.
[2] Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Chem. Rev. 2015, 1195, 327.
[3] Wang, Y. M.; Zhu, D. M.; Yang, Y.; Zhang, K.; Zhang, X. K.; Lv, M. S.; Hu, L.; Ding, S. J.; Wang, L. Acta Chim. Sinica 2020, 78, 76. (王英美, 朱道明, 杨阳, 张珂, 张修珂, 吕明珊, 胡力, 丁帅杰, 王亮, 化学学报, 2020, 78, 76.)
[4] Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156. (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[5] Lin, H.; Chen, Y.; Shi, J. L. Chem. Soc. Rev. 2018, 47, 1938.
[6] Li, J. C.; Pu, K. Y. Chem. Soc. Rev. 2019, 48, 38.
[7] Wong, P. T.; Choi, S. K. Chem. Rev. 2015, 115, 3388.
[8] Dai, Y. L.; Xu, C.; Sun, X. L.; Chen X. Y. Chem. Soc. Rev. 2017, 46, 3830.
[9] Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Chem. Rev. 2016, 116, 2826.
[10] Maeda, H. Bioconjugate Chem. 2010, 21, 797.
[11] Yang, L. M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047. (杨立敏, 刘波, 李娜, 唐波, 化学学报, 2017, 75, 1047.)
[12] Zhang, L. W.; Qian, M.; Wang, J. Y. Acta Chim. Sinica 2017, 75, 770. (张留伟, 钱明, 王静云, 化学学报, 2017, 75, 770.)
[13] Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Chem. Soc. Rev. 2019, 48, 3771.
[14] Wilson, W. R.; Hay, M. P. Nat. Rev. Cancer 2011, 11, 393.
[15] (a) Patyar, S.; Joshi, R.; Byrav, D. S. P.; Prakash, A.; Medhi, B.; Das, B. K. J. Biomed. Sci. 2010, 17, 21. (b) Malmgren, R. A.; Flanigan, C. C. Cancer Res. 1955, 15, 473. (c) Zhao, M.; Yang, M.; Li, X. M.; Jiang, P.; Baranov, E.; Li, S.; Xu, M. X.; Penman, S.; Hoffman, R. M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 755. (d) Sedighi, M.; Bialvaei, A. Z.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E. Cancer Med. 2019, 8, 3167.
[16] Chen, F. M.; Li, N.; Xing, J. H.; Zheng, M. B.; Zhong, Y.; Luo, Y. M.; Ma, A. Q.; Cui, L.; Cai, L. T. Prog. Biochem. Biophys. 2019, 46, 1162. (陈辅明, 李娜, 邢婕华, 郑明彬, 钟莹, 罗英梅, 马爱青, 崔燎, 蔡林涛, 生物化学与生物物理进展, 2019, 46, 1162.)
[17] Liu, S. C.; Minton, N. P.; Giaccia, A. J.; Brown, J. M. Gene Ther. 2002, 9, 291.
[18] Yu, Y. A.; Shabahang, S.; Timiryasova, T. M.; Zhang, Q.; Beltz, R.; Gentschev, I.; Goebel, W.; Szalay, A. A. Nat. Biotechnol. 2004, 22, 313.
[19] Broadway, K. M.; Suh, S.; Behkam, B.; Scharf, B. E. J. Biotechnol. 2017, 251, 76.
[20] Toso, J. F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F.; Freezer, L. J.; Morton, K. E.; Seipp, C.; Haworth, L.; Mavroukakis, S.; White, D.; MacDonald, S.; Mao, J.; Sznol, M.; Rosenberg, S. A. J. Clin. Oncol. 2002, 20, 142.
[21] Charbonneau, M. R.; Isabella, V. M.; Li, N.; Kurtz, C. B. Nat. Commun. 2020, 11, 1738.
[22] Afkhami-Poostchi, A.; Mashreghi, M.; Iranshahi, M.; Matin, M. M. Int. J. Pharm. 2020, 579, 119159.
[23] Hayashi, K.; Zhao, M.; Yamauchi, K.; Yamamoto, N.; Tsuchiya, H.; Tomita, K.; Hoffman, R. B. J. Cell. Biochem. 2009, 106, 992.
[24] Zheng, J. H.; Nguyen, V. H.; Jiang, S. N.; Park, S. H.; Tan, W. Z.; Hong, S. H.; Shin, M. G.; Chung, I. J.; Hong, Y.; Bom, H. S.; Choy, H. E.; Lee, S. E.; Rhee, J. H.; Min, J. J. Sci. Transl. Med. 2017, 9, eaak9537.
[25] Yang, X. G.; Yang, Z. Q.; Sun, Z. G. Med. Recapitulate 2012, 18, 2001. (杨旭光, 杨志奇, 孙振纲, 医学综述, 2012, 18, 2001.)
[26] Oelschlaeger, T. A. Bioengineered 2010, 1, 146.
[27] Felfoul, O.; Mohammadi, M.; Taherkhani, S.; Lanauze, D. D.; Xu, Z. Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M.; Gaboury, L.; Tabrizian, M.; Kaou, N.; Atkin, M.; Vuong, T.; Batist, G.; Beauchemin, N.; Radzioch, D. Martel, S. Nat. Nanotechnol. 2016, 11, 941.
[28] Chen, F. M.; Zang, Z. S.; Chen, Z.; Cui, L.; Chang, Z. G.; Ma, A. Q.; Yin, T.; Liang, R. J.; Han, Y. T.; Wu, Z. H.; Zheng, M. B.; Liu, C. L.; Cai, L. T. Biomaterials 2019, 214, 119226.
[29] Bazylinski, D. A.; Williams, T. J.; Lefe`vre, C. T.; Berg, R. J.; Zhang, C. L.; Bowser, S. S.; Dean, A. J.; Beveridge, T. J. Int. J. Syst. Evol. Microbiol. 2013, 63, 801.
[30] Xie, S. Z.; Zhao, L.; Song, X. J.; Tang, M. S.; Mo, C. F.; Li, X. H. J. Controlled Release 2017, 268, 390.
[31] Luo, Y.; Xu, D.; Gao, X.; Xiong, J.; Jiang, B. L.; Zhang, Y.; Wang, Y. T.; Tang, Y.; Chen, C.; Qiao, H.; Li, H. N.; Zou, J. Z. Biochem. Biophys. Res. Commun. 2019, 514, 1147.
[32] Chen, Q. W.; Liu, X. H.; Fan, J. X.; Peng, S. Y.; Wang, J. W.; Wang, X. N.; Zhang, C.; Liu, C. J.; Zhang, X. Z. Adv. Funct. Mater. 2020, 30, 1909806.
[33] Wu, M.; Wu, W. B.; Duan, Y. K.; Li, X. Q.; Qi, G. B.; Liu, B. Chem. Mater. 2019, 31, 7212.
[34] Hu, Q. L.; Wu, M.; Fang, C.; Cheng, C. Y.; Zhao, M. M.; Fang, W. H.; Chu, P. K.; Ping, Y.; Tang, G. P. Nano Lett. 2015, 15, 2732.
[35] Chen, J.; Shen, C. Q.; Zheng, C. H.; Li, Y. W.; Lü, J. G.; Zhang, W. N.; Zhou, Y. J.; Zhu, J. Acta Chim. Sinica 2007, 65, 547. (陈军, 盛春泉, 郑灿辉, 李耀武, 吕加国, 张万年, 周有骏, 朱驹, 化学学报, 2007, 65, 547.)
[36] Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Nano Lett. 2016, 16, 3493.
[37] Hyre, D. E.; Trong, I. L.; Merritt, E. A.; Eccleston, J. F.; Green, N. M.; Stenkamp, R. E.; Stayton, P. S. Protein Sci. 2006, 15, 459.
[38] Suh, S. B.; Jo, A.; Traore, M. A.; Zhan, Y.; Coutermarsh-Ott, S. L.; Ringel-Scaia, V. M.; Allen, I. C.; Davis, R. M.; Behkam, B. Adv. Sci. 2019, 6, 1801309.
[39] Uthaman, S.; Zheng, S. H.; Han, J.; Choi, Y. J.; Cho, S.; Nguyen, V. D.; Park, J. O.; Park, S. H.; Min, J. J.; Park, S.; Park, I. K. Adv. Healthcare Mater. 2016, 5, 288.
[40] Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. ACS Nano 2018, 12, 5995.
[41] Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.; Huang, C. C.; Li, W. M.; Sunc, C. K.; Yeh, C. S. Chem. Commun. 2008, 37, 4430.
[42] Liu, Y.; Zhou, M.; Luo, D.; Wang, L. J.; Hong, Y. K.; Yang, Y. P.; Sha, Y. L. Biochem. Biophys. Res. Commun. 2012, 425, 769.
[43] Wang, Y.; Zhou, Z. X.; Chen, W. F.; Qin, M.; Zhang, Z. R.; Gong, T.; Sun, X. J. Controlled Release 2018, 280, 39.
[44] Marietta, M. A.; Yoon, P. S.; Iyengar, R.; Leaf, C. D.; Wishnok, J. S. Biochemistry 1988, 27, 8706.
[45] Chen, L. J.; He, Q. J.; Lei, M. Y.; Xiong, L. W.; Shi, K.; Tan, L. W.; Jin, Z. K.; Wang, T. F.; Qian, Z. Y. ACS Appl. Mater. Interfaces 2017, 9, 36473.
[46] Zheng, D. W.; Chen, Y.; Li, Z. H.; Xu, L.; Li, C. X.; Li, B.; Fan, J. X.; Cheng, S. X.; Zhang, X. Z. Nat. Commun 2018, 9, 1680.
[47] Wang, S. B.; Liu, X. H.; Li, B.; Fan, J. X.; Ye, J. J.; Cheng, H.; Zhang, X. Z. Adv. Funct. Mater. 2019, 29, 1904093.
[48] Xiong, M. H.; Bao, Y.; Du, X. J.; Tan, Z. B.; Jiang, Q.; Wang, H. X.; Zhu, Y. H.; Wang, J. ACS Nano 2013, 7, 10636.
[49] Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.; Singh, A. V.; Sitti, M. Adv. Drug Delivery Rev. 2016, 106, 27.
[50] Gao, X. H.; Weng, M. L.; Cao, H.; Li, Y. Q.; Li, M. G. Acta Chim. Sinica 2006, 64, 1163. (高旭红, 文孟良, 曹槐, 李一青, 李铭刚, 化学学报, 2006, 64, 1163.)
[51] Toyofuku, M.; Nomura, N.; Eberl, L. Nat. Rev. Microbiol. 2019, 17, 13.
[52] Yi, J.; Liu, Q.; Kong, Q. K. Acta Microbiol. Sin. 2016, 56, 911. (易洁, 刘青, 孔庆科, 微生物学报, 2016, 56, 911.)
[53] Fan, J. X.; Peng, M. Y.; Wang, H.; Zheng, H. R.; Liu, Z. L.; Li, C. X.; Wang, X. N.; Liu, X. H.; Cheng, S. X.; Zhang, X. Z. Adv. Mater. 2019, 31, 1808278.



[54] Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Nano Lett. 2018, 18, 2373.
[55] Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang L. F. Nano Lett. 2015, 15, 1403.
[56] Huang, Y. K.; Beringhs, A. O.; Chen, Q.; Song, D. H.; Chen, W.; Lu, X. L.; Fan, T. H.; Nieh, M. P.; Lei, L. ACS Appl. Bio Mater. 2019, 2, 5608.
[57] Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. ACS Nano 2014, 8, 1525.
[58] Kim, O. Y.; Dinh, N. T. H.; Park, H. T.; Choi, S. J.; Hong, K.; Gho, Y. S. Biomaterials 2017, 113, 68.
[59] Huang, W. W.; Shu, C. Y.; Hua, L. Q.; Zhao, Y. L.; Xie, H. H.; Qi, J. L.; Gao, F. L.; Gao, R. Y.; Chen, Y. J.; Zhang, Q. S.; Li, W. R.; Yuan, M. C.; Ye, C.; Ma, Y. B. Acta Biomater. 2020, 108, 300.
[60] Kuerbana, K.; Gao, X. W.; Zhang, H.; Liu, J. Y.; Dong, M. X.; Wu, L. N.; Ye, R. H.; Feng, M. Q.; Ye, L. Acta Pharm. Sin. B 2020, 10, 1534.
[61] Li, M.; Li, S. Y.; Zhou, H.; Tang, X. F.; Wu, Y.; Jiang, W.; Tian, Z. G.; Zhou, X. C.; Yang, X. Z.; Wang, Y. C. Nat. Commun. 2020, 11, 1126.
[62] Chen, Q.; Bai, H. Z.; Wu, W. T.; Huang, G. J.; Li, Y.; Wu, M.; Tang, G. P.; Ping, Y. Nano Lett. 2020, 20, 11.
[63] Chen, Q.; Huang, G. J.; Wu, W. T.; Wang, J. W.; Hu, J. W.; Mao, J. M.; Chu, P. K.; Bai, H. Z.; Tang, G. P. Adv. Mater. 2020, 32, 1908185.
[64] Liu, Y.; Hong, L.; Yu, L. S.; Jiang, H. D.; Chen, J. Z.; Meng, Q.; Chen, S. Q.; Zeng, S. Acta Pharm. Sin. 2011, 46, 19. (刘瑶, 洪岚, 余露山, 蒋惠娣, 陈建忠, 孟琴, 陈枢青, 曾苏, 药学学报, 2011, 46, 19.)
[65] Sevastre, A. S.; Horescu, C.; Baloi, S. C.; Cioc, C. E.;Vatu, B. I.; Tuta, C.; Artene, S. A.; Danciulescu, M. M.; Tudorache, S.; Dricu, A. Coatings 2019, 9, 628.

Outlines

/