Article

Dual Effect of Aluminum Doping and Lithium Tungstate Coating on the Surface Improves the Cycling Stability of Lithium-rich Manganese-based Cathode Materials

  • Ren Xuqiang ,
  • Li Donglin ,
  • Zhao Zhenzhen ,
  • Chen Guangqi ,
  • Zhao Kun ,
  • Kong Xiangze ,
  • Li Tongxin
Expand
  • School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China

Received date: 2020-07-16

  Online published: 2020-10-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21473014, 21073021).

Abstract

The layered lithium-rich manganese-based cathode material has been widely concerned because of it's advantages such as a specific discharge capacity greater than 250 mAh·g-1 and a high discharge platform, and is expected to become the next-generation lithium ion battery cathode material. However, lithium-rich manganese-based cathode materials have poor cycle stability, low coulombic efficiency for the first charge and discharge, and low rate performance. The most important thing is that the problem of faster voltage decays on the discharge platform has not been effectively solved, The current it is mainly to improve the performance by element doping modification and surface coating, so it is very important to find suitable doping elements and coating materials. The common coating material is mainly to prevent direct contact between the electrolyte and the positive electrode material to improve the cycle stability, and it is difficult to slow down the attenuation of the discharge voltage platform. Al-doping lithium-rich manganese-based Li1.2Mn0.54-xAlxNi0.13Co0.13O2 (x=0, 0.03) cathode material was prepared by sol-gel method and Li2WO4 surface coating by one-step liquid phase method. The required materials were confirmed by X-ray diffractometer (XRD), energy disperse spectroscopy (EDS) and scanning electron microscope (SEM) tests, and then the effects of Al-doping and Li2WO4 coated double-effect modification on the electrochemical performance of lithium-rich manganese-based cathode materials were studied by electrochemical test system. The results show that Al doping significantly improves the cycling stability of lithium-rich manganese-based cathode materials, and the coating Li2WO4 significantly improves its rate performance and discharge platform voltage attenuation. In 5% Li2WO4 coated Li1.2Mn0.51Al0.03Ni0.13Co0.13O2 cathode material in charge and discharge voltage 2.0~4.8 V, and under the current density 1000 mA·g-1, the specific capacity is still as high as about 110 mAh·g-1. At the same time, the specific capacity retention rate was 78% after 300 cycles at the current density of 100 mA·g-1, and the voltage decay of the discharge platform significantly slowed down during the cycle.

Cite this article

Ren Xuqiang , Li Donglin , Zhao Zhenzhen , Chen Guangqi , Zhao Kun , Kong Xiangze , Li Tongxin . Dual Effect of Aluminum Doping and Lithium Tungstate Coating on the Surface Improves the Cycling Stability of Lithium-rich Manganese-based Cathode Materials[J]. Acta Chimica Sinica, 2020 , 78(11) : 1268 -1274 . DOI: 10.6023/A20070319

References

[1] Tarascon, J.-M.; Armand, M. Nature 2001, 414, 359.
[2] Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652.
[3] Park, K.-S.; Cho, M.-H.; Jin, S.-J.; Nahm, K.-S.; Hong, Y.-S. Solid State Ionics 2004, 171, 141.
[4] Kang, K.; Meng, Y.-S.; Breger, J.; Grey, C.-P.; Ceder, G. Science 2006, 311, 977.
[5] Fergus, J.-W. J. Power Sources 2010, 195, 939.
[6] Mohanty, D.; Kalnaus, S.; Meisner, R.-A.; Rhodes, K.-J.; Li, J.-L.; Payzant, E.-A.; Wood III, D.-L.; Daniel, C. J. Power Sources 2013, 229, 239.
[7] Gallagher, K.-G.; Croy, J.-R.; Balasubramanian, M.; Bettge, M.; Abraham, D.-P.; Burrell, A.-K.; Thackeray, M.-M. Electrochem. Commun. 2013, 33, 96.
[8] Croy, J.-R.; Gallagher, G.-K.; Balasubramanian, M.; Chen, Z.-H.; Ren, Y.; Kim, D.-H.; Kang, S.-H.; Dees, D.-W.; Thackeray, M.-M. J. Phys. Chem. C 2013, 117, 6525.
[9] Liu, S.; Liu, Z.-P.; Shen, X.; Wang, X.-L.; Liao, S.-C.; Yu, R.-C.; Wang, Z.-X.; Hu, Z.-W.; Chen, C.-T.; Yu, X.-Q.; Yang, X.-Q.; Chen, L.-Q. Adv. Eng. Mater. 2019, 9, 1901530.
[10] Zhang, J.-N.; Li, Q.-H.; Ouyang, C.-Y.; Yu, X.-Q.; Ge, M.-Y.; Huang, X.-J.; Hu, E.-Y.; Ma, C.; Li, S.-F.; Xiao, R.-J.; Yang, W.-L.;  Chu, Y.; Liu, Y.-J.; Yu, H.-G.; Yang, X.-Q.; Huang, X.-J.; Chen, L.-Q.; Li, H. Natural Energy 2019, 4, 594.
[11] He, W.; Yuan, D.-D.; Qian, J.-F.; Ai, X.-P.; Yang, H.-X.; Cao, Y.-L. J. Mater. Chem. A 2013, 1, 11397.
[12] Li, Q.; Li, G.-S.; Fu, C.-C.; Luo, D.; Fan, J.-M.; Li, L.-P. ACS Appl. Mater. Interfaces 2014, 6, 10330.
[13] Xiang, Y.-H.; Li, J.; Wu, X.-W.; Liu, Z.-X.; Xiong, L.-Z.; He, Z.-Q.; Yin, Z.-L. Ceram. Int. 2016, 42, 8833.
[14] Knight, J.-C.; Nandakumar, P.; Kan, W.-H.; Manthiram, A. J. Mater. Chem. A 2015, 3, 2006.
[15] Deng, Z.-Q.; Manthiram, A. J. Phys. Chem. C 2011, 115, 7097.
[16] Du, J.-Y.; Shan, Z.-Q.; Zhu, K.-L.; Liu, X.-Y.; Tian, J.-H.; Du, H.-Y. J. Solid State Electrochem. 2014, 19, 1037.
[17] Yu, S.-H.; Yoon, T.; Mun, J.-Y.; Park, S.-J.; Kang, Y.-S.; Park, J.-H.; Oh, S.-M.; Sung, Y.-E. J. Mater. Chem. A 2013, 1, 2833.
[18] Li, L.; Song, B.-H.; Chang, Y.-L.; Xia, H.; Yang, J.-R.; Lee, K.-S.; Lu, L. J. Power Sources 2015, 283, 162.
[19] An, J.; Shi, L.-Y.; Chen, G.-R.; Li, M.; Liu, H.-J.; Yuan, S.; Chen, S.-M.; Zhang, D.-S. J. Mater. Chem. A 2017, 5, 19728.
[20] Li, Z.; Wang, Z.; Ban, L.-Q.; Wang, J.-T.; Lu, S.-G. Acta Chim. Sinica 2019, 77, 1115. (李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77, 1115.)
[21] Lim, S.-N.; Seo, J.-Y.; Jung, D.-S.; Park, S.-B.; Yeonc, S.-H. J. Electroanal. Chem. 2015, 740, 88.
[22] Hua, S.-L.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanama, R. J. Power Sources 2009, 188, 554.
[23] Zheng, J.-M.; Li, J.; Zhang, Z.-R.; Guo, X.-J.; Yang, Y. Solid State Ionics 2008, 179, 1794.
[24] Zhang, X.-F.; Belharouak, I.; Li, L.; Lei, Y.; Elam, J.-W.; Nie, A.; Chen, X.-Q.; Yassar, R.-S.; Axelbaum, R.-L. Adv. Eng. Mater. 2013, 3, 1299.
[25] Wu, Q.; Yin, Y.-F.; Sun, S.-W.; Zhang, X.-P.; Wan, N.; Bai, Y. Electrochim. Acta 2015, 158, 73.
[26] Wu, Y.; Muruga, V.-A.; Manthiram, A. J. Electrochem. Soc. 2008, 155, A635.
[27] Li, C.-D.; Yao, Z.-L.; Xu, J.; Tang, P.; Xiong, X. Ionics 2016, 23, 549.
[28] Ma, D.-T.; Zhang, P.-X.; Li, Y.-L.; Ren, X.-Z. Scientific Reports 2015, 5, 11257.
[29] Xiang, Y-H.; Yin, Z.-L.; Zhang, Y.-H.; Li, X.-H. Electrochim. Acta 2013, 19, 214.
[30] Chen, Y.; Xu, G.-F.; Li, J.-L.; Zhang, Y.-K.; Chen, Z.; Kang, F.-Y. Electrochim. Acta 2013, 87, 686.
[31] Song, C.-K.; Feng, W.-J.; Su, W.-X.; Chen, L.-J.; Li, M.-M. Integrated Ferroelectrics 2019, 200, 117.
[32] Huang, X.-K.; Zhang, Q.-S.; Chang, H.-T.; Gan, J.-L.; Yue, H.-J.; Yang, Y. J. Electrochem. Soc. 2009, 156, A162.
[33] Li, Z.; Chernova, N.-A.; Feng, J.-J.; Upreti, S.; Omenya, F.; Whittingham, M.-S. J. Electrochem. Soc. 2012, 159, A116.
[34] Yan, W. C.; Xie, Y.; Jiang, J.-C.; Sun, D.-Y.; Ma, X.-D.; Lan, Z.-G.; Jin, Y.-C. ACS Sustainable Chem. Eng. 2018, 6, 4625.
[35] Yahaya, A.-H.; Ibrahim, Z.-A.; Arof, A.-K. J. Alloys Compd. 1996, 241, 147.
[36] Nassau, K. J. Electrochem. Soc. 1980, 127, 2743.
[37] Hayashi, T.; Okada, J.; Toda, E.; Kuzuo, R.; Matsuda, Y.; Kuwata, N.; Kawamura, J. J. Power Sources 2015, 127, 2743.
[38] Hayashi, T.; Matsuda, Y.; Kuwata, N.; Kawamura, J. J. Power Sources 2017, 354, 41.
[39] Hayashi, T.; Miyazaki, T.; Matsuda, Y.; Kuwata, N.; Saruwatari, M.; Furuichi, Y.; Kurihara, K.; Kuzuo, R.; Kawamura J. J. Power Sources 2016, 305, 46.
[40] Li, X.-N.; Cao, Z.-X.; Dong, H.-Y.; Shi, Z.-P.; Zhang, H.-S.; Li, J.-Y.; Yang, S.-J.; Yang, S.-T. RSC Adv. 2020, 10, 3166.
[41] Yue, P.; Wang, Z.-X.; Guo, H.-J.; Xiong, X.-H.; Li, X.-H. Electrochim. Acta 2013, 92, 1.
[42] Nayak, P.-K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, W.-J.; Aurbach, D. Adv. Eng. Mater. 2016, 6, 1502398.
[43] Thackeray, M.-M.; Kang, S.-H.; Johnson, C.-S.; Vaughey, J.-T.; Benedeka, R.; Hackneyb, S.-A. J. Mater. Chem. 2007, 115, 305.
[44] Zheng, Z.-H.; Li, Q. Introduction to Rietveld Refinement with X-Ray Power Diffraction Data GSAS Software, China Building Materials Press, Beijing, 2016. (郑振环, 李强, X射线多晶衍射数据Rietveld精修及GSAS软件入门, 中国建材工业出版社, 北京, 2016.)
[45] Guilmard, M.; Rougier, A.; Grüne, M.; Croguennec, L.; Delmas, C. J. Power Sources 2003, 115, 305.
[46] Guo, H.-C.; Xia, Y.-G.; Zhao, H.; Yin, C.; Ji, K.; Zhao, F.; Liu, Z.-P. Ceramics International 2017, 43, 13845.
Outlines

/