Article

In-situ Li3PO4 Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries

  • Liu Jiuding ,
  • Zhang Yudong ,
  • Liu Junxiang ,
  • Li Jinhan ,
  • Qiu Xiaoguang ,
  • Cheng Fangyi
Expand
  • a Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China;
    b Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China;
    c Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Nankai University, Tianjin 300071, China

Received date: 2020-07-28

  Online published: 2020-10-12

Supported by

Project supported by the Ministry of Science and Technology of the People's Republic of China (No. 2016YFA0202503) and the National Natural Science Foundation of China (Nos. 21925503, 21835004).

Abstract

Lithium-rich manganese-based oxides (LRMO) are promising cathode materials to build next generation lithium-ion batteries because of high capacity and low cost. However, the severe capacity fade and voltage decay, which originate from surface oxygen loss, side reactions and irreversible phase transformation, restrict their practical application. Proposed approaches to address these issues include electrolyte modification, synthesis condition optimization, tuning elemental composition, bulk doping and surface coating. Surface coating has been proved to be an effective method to stabilize the interface between LRMO and electrolyte. Herein, we report a facile approach to synthesize Li3PO4-coated LRMO (LRMO@LPO) by in-situ carbonate-phosphate precipitate conversion reaction. The formation of Li3PO4 layer and its contribution to enhanced electrochemical performance are investigated in detail. Transmission electron microscopy (TEM) reveals that the surface of carbonate precursor converts to Ni3(PO4)2 after reacting with Na2HPO4 solution, which finally transforms to Li3PO4 coating layer with thickness below 30 nm during calcination process. Quinoline phosphomolybdate gravimetric method gives the optimal Li3PO4 coating content of 0.56%. The modified LRMO@LPO sample exhibits improved cycling stability (191.1 mAh·g-1 after 175 cycles at 0.5C between 2.0~4.8 V and 81.8% capacity retention) and suppressed voltage decay (1.09 mV per cycle), compared with bare LRMO material (72.9% capacity retention, 1.78 mV per cycle). The electrodes are studied by galvanostatic intermittent titration technique, electrochemical impedance spectroscopy, TEM and inductively coupled plasma atomic emission spectrometry. The results suggest efficient mitigation of phase transformation and dissolution of transition metal in LRMO@LPO. As a coating material with lithium-ion conductivity, Li3PO4 not only acts as a physical barrier to inhibit side reaction between the electrolyte and LRMO, but also promotes lithium ion transport at the surface region of cathode. The in-situ surface modification approach simplifies the traditional post coating process, and may provide new insight to build stable and low cost Li-rich cathode for lithium-ion batteries.

Cite this article

Liu Jiuding , Zhang Yudong , Liu Junxiang , Li Jinhan , Qiu Xiaoguang , Cheng Fangyi . In-situ Li3PO4 Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries[J]. Acta Chimica Sinica, 2020 , 78(12) : 1426 -1433 . DOI: 10.6023/A20070330

References

[1] Shen, Y.; Chen, L. Sci. Bull. 2020, 65, 117(in Chinese). (沈炎宾, 陈立桅, 科学通报, 2020, 65, 117.)
[2] Chen, J. Acta Chim. Sinica 2017, 75, 127(in Chinese). (陈军, 化学学报, 2017, 75, 127.)
[3] Lu, Y.; Zhang, Q.; Chen, J. Sci. China Chem. 2019, 62, 533.
[4] Kim, J.-S.; Johnson, C. S.; Thackeray, M. M. Electrochem. Commun. 2002, 4, 205.
[5] Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17, 3112.
[6] Zhao, E.; Yu, X.; Wang, F.; Li, H. Sci. China Chem. 2017, 60, 1483.
[7] Zhao, E.; Zhang, M.; Wang, X.; Hu, E.; Liu, J.; Yu, X.; Olguin, M.; Wynn, T. A.; Meng, Y. S.; Page, K.; Wang, F.; Li, H.; Yang, X.-Q.; Huang, X.; Chen, L. Energy Storage Materials 2020, 24, 384.
[8] Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Adv. Mater. 2018, 30, 1705197.
[9] House, R. A.; Maitra, U.; Perez-Osorio, M. A.; Lozano, J. G.; Jin, L.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J.; Roberts, M. R.; Bruce, P. G. Nature 2020, 577, 502.
[10] Li, Q.; Yao, Z.; Lee, E.; Xu, Y.; Thackeray, M. M.; Wolverton, C.; Dravid, V. P.; Wu, J. Nat. Commun. 2019, 10, 1692.
[11] Lee, S.; Jin, W.; Kim, S. H.; Joo, S. H.; Nam, G.; Oh, P.; Kim, Y. K.; Kwak, S. K.; Cho, J. Angew. Chem. Int. Ed. 2019, 58, 10478.
[12] Deng, B.; Sun, D.; Wan, Q.; Wang, H.; Chen, T.; Li, X.; Qu, M.; Peng, G. Acta Chim. Sinica 2018, 76, 259(in Chinese). (邓邦为, 孙大明, 万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂, 化学学报, 2018, 76, 259.)
[13] Xiao, Z.; Liu, J.; Fan, G.; Yu, M.; Liu, J.; Gou, X.; Yuan, M.; Cheng, F. Mater. Chem. Front. 2020, 4, 1689.
[14] Shi, J.-L.; Xiao, D.-D.; Ge, M.; Yu, X.; Chu, Y.; Huang, X.; Zhang, X.-D.; Yin, Y.-X.; Yang, X.-Q.; Guo, Y.-G.; Gu, L.; Wan, L.-J. Adv. Mater. 2018, 30, 1705575.
[15] Yang, C.; Gong, Z.; Zhao, W.; Yang, Y. Acta Chim. Sinica 2017, 75, 212(in Chinese). (杨春, 龚正良, 赵文高, 杨勇, 化学学报, 2017, 75, 212.)
[16] Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A. M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. Chem. Mater. 2017, 29, 9923.
[17] Zheng, Z.; Yang, X.-S.; Hua, W.-B.; Tang, Y. Chin. J. Inorg. Chem. 2017, 33, 963(in Chinese). (郑卓, 杨秀山, 滑纬博, 唐艳, 无机化学学报, 2017, 33, 963.)
[18] Liu, J.; Wang, J.; Ni, Y.; Zhang, Y.; Luo, J.; Cheng, F.; Chen, J. Small Methods 2019, 3, 1900350.
[19] Zhang, J.; Cheng, F.; Chou, S.; Wang, J.; Gu, L.; Wang, H.; Yoshikawa, H.; Lu, Y.; Chen, J. Adv. Mater. 2019, 31, 1901808.
[20] Yu, R.; Wang, X.; Fu, Y.; Wang, L.; Cai, S.; Liu, M.; Lu, B.; Wang, G.; Wang, D.; Ren, Q.; Yang, X. J. Mater. Chem. A 2016, 4, 4941.
[21] Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Adv. Energy Mater. 2016, 6, 1502398.
[22] Wang, Y.; Yang, Z.; Qian, Y.; Gu, L.; Zhou, H. Adv. Mater. 2015, 27, 3915.
[23] Wang, Y.; Gu, H.-T.; Song, J.-H.; Feng, Z.-H.; Zhou, X.-B.; Zhou, Y.-N.; Wang, K.; Xie, J.-Y. J. Phys. Chem. C 2018, 122, 27836.
[24] Yang, J.; Li, P.; Zhong, F.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Xia, D.; Cao, Y. Adv. Energy Mater. 2020, 10, 1904264.
[25] Zhang, W.; Sun, Y.; Deng, H.; Ma, J.; Zeng, Y.; Zhu, Z.; Lv, Z.; Xia, H.; Ge, X.; Cao, S.; Xiao, Y.; Xi, S.; Du, Y.; Cao, A.; Chen, X. Adv. Mater. 2020, 32, 2000496.
[26] Huang, J.-C.; Mei, L.; Ma, Z.; Zhu, X.-Y.; Quan, J.-B.; Li, D.-C. Chin. J. Inorg. Chem. 2017, 33, 1236(in Chinese). (黄继春, 梅琳, 马峥, 朱贤雨, 全景宾, 李德成, 无机化学学报, 2017, 33, 1236.)
[27] Kang, Y.; Liang, Z.; Zhao, Y.; Xu, H.; Qian, K.; He, X.; Li, T.; Li, J. Sci. China Mater. 2020, 63, 1683.
[28] Xiao, Z.; Meng, J.; Li, Q.; Wang, X.; Huang, M.; Liu, Z.; Han, C.; Mai, L. Sci. Bull. 2018, 63, 46.
[29] Li, Z.; Wang, Z.; Ban, L.; Wang, J.; Lu, S. Acta Chim. Sinica 2019, 77, 1115(in Chinese). (李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77, 1115.)
[30] Yang, S.-Q.; Wang, P.-B.; Wei, H.-X.; Tang, L.-B.; Zhang, X.-H.; He, Z.-J.; Li, Y.-J.; Tong, H.; Zheng, J.-C. Nano Energy 2019, 63, 103889.
[31] Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W.; Cho, J. Adv. Energy Mater. 2015, 5, 1500274.
[32] Haynes, W. M. CRC Handbook of Chemistry and Physics, 97th ed., Vol. 5, CRC Press Taylor & Francis Group, Boca Raton, Florida, 2016, pp. 177-178.
[33] Xiao, Z. B.; Chen, S.; Guo, M. M. Trans. Nonferrous Met. Soc. China 2011, 21, 2454.
[34] Zhang, Y.; Hou, P.; Zhou, E.; Shi, X.; Wang, X.; Song, D.; Guo, J.; Zhang, L. J. Power Sources 2015, 292, 58.
[35] Radin, M. D.; Hy, S.; Sina, M.; Fang, C.; Liu, H.; Vinckeviciute, J.; Zhang, M.; Whittingham, M. S.; Meng, Y. S.; Van der Ven, A. Adv. Energy Mater. 2017, 7, 1602888.
[36] Toby, B. H.; Von Dreele, R. B. J. Appl. Crystallogr. 2013, 46, 544.
[37] Shen, C.-H.; Wang, Q.; Fu, F.; Huang, L.; Lin, Z.; Shen, S.-Y.; Su, H.; Zheng, X.-M.; Xu, B.-B.; Li, J.-T.; Sun, S.-G. ACS Appl. Mater. Interfaces 2014, 6, 5516.
[38] Cui, H.; Li, H.; Liu, J.; Zhang, Y.; Cheng, F.; Chen, J. Inorg. Chem. Front. 2019, 6, 1694.
[39] Popovi, L.; Manoun, B.; de Waal, D.; Nieuwoudt, M. K.; Comins, J. D. J. Raman Spectrosc. 2003, 34, 77.
[40] Qiao, Q. Q.; Zhang, H. Z.; Li, G. R.; Ye, S. H.; Wang, C. W.; Gao, X. P. J. Mater. Chem. A 2013, 1, 5262.
[41] Kumar, P. R.; Venkateswarlu, M.; Misra, M.; Mohanty, A. K.; Satyanarayana, N. J. Electrochem. Soc. 2011, 158, A227.
[42] Hu, S.; Li, Y.; Chen, Y.; Peng, J.; Zhou, T.; Pang, W. K.; Didier, C.; Peterson, V. K.; Wang, H.; Li, Q.; Guo, Z. Adv. Energy Mater. 2019, 9, 1901795.
[43] Zheng, J.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P.; Chen, X.; Wang, C.; Zhang, J.-G. Chem. Mater. 2014, 26, 6320.
[44] Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Adv. Mater. 2018, 30, 1801751.
[45] Yan, P.; Zheng, J.; Tang, Z. K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J. G.; Liu, L. M.; Wang, C. Nat. Nanotechnol. 2019, 14, 602.
[46] Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Adv. Mater. 2011, 23, 1695.
[47] Gent, W. E.; Lim, K.; Liang, Y.; Li, Q.; Barnes, T.; Ahn, S. J.; Stone, K. H.; McIntire, M.; Hong, J.; Song, J. H.; Li, Y.; Mehta, A.; Ermon, S.; Tyliszczak, T.; Kilcoyne, D.; Vine, D.; Park, J. H.; Doo, S. K.; Toney, M. F.; Yang, W.; Prendergast, D.; Chueh, W. C. Nat. Commun. 2017, 8, 2091.
[48] Sharifi-Asl, S.; Yurkiv, V.; Gutierrez, A.; Cheng, M.; Balasubramanian, M.; Mashayek, F.; Croy, J.; Shahbazian-Yassar, R. Nano Lett. 2020, 20, 1208.
Outlines

/