Article

Porous Metal-Organic Frameworks Lithium Metal Anode Protection Layer towards Long Life Li-O2 Batteries

  • Yu Yue ,
  • Zhang Xinbo
Expand
  • a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
    b University of Science and Technology of China, Hefei 230026, China

Received date: 2020-07-18

  Online published: 2020-10-15

Supported by

Project supported by the National Key R&D Program of China (No. 2016YFB0100103), the Technology and Industry for National Defence of the People’s Republic of China (No. JCKY2016130B010), and the National Natural Science Foundation of China (Nos. 21725103, 21771013).

Abstract

Among the numerous successors of Li-ion batteries, Li-O2 cells become promising candidates because of their higher theoretical energy density (3500 Wh·kg-1). However, the uncontrolled dendrite growth and serious corrosion issues of lithium metal anode are major bottlenecks for practical application of Li-O2 batteries. To solve the above challenges, herein, we prepared metal-organic frameworks materials (MOF-801) with high specific surface area and abundant pores as a protection layer on lithium metal anode in Li-O2 batteries. In this manuscript, pure and cubic-shaped MOF-801 materials are successfully synthesized and the high specific surface area (762.9 m2·g-1) is confirmed. And MOF-801 is verified stable enough as a protection layer towards lithium metal anode and tetraethylene glycol dimethyl ether (TEGDME) 1 mol·L-1 LiCF3SO3 electrolyte system. Due to the rich pore structures and high specific surface area, MOF-801 can assist to form uniform Li+ flux and dendrite-free lithium deposition morphology can be confirmed in the scanning electron microscope images, which can avoid the short circuit even fire disaster from the uncontrollable dendrite growth. Besides, the shield effect as well as the water capture function of MOF-801 protection layer can also effectively prevent serious side reactions from the shuttle effect of the contaminants (H2O, O2 and strong oxidizing species). Consequently, this strategy enables stable electrode/electrolyte interface and achieves 800 h plating/stripping cycles under a low overpotential of 0.023 V. In contrast, the batteries without protection can only run for 254 h with the overpotential as high as 5 V at last. The electrochemical impedance spectroscopy results also verify that the much lower impedance of the lithium metal anode after protection. When applied in practical Li-O2 batteries with a fixed capacity of 1000 mAh·g-1 at a current density of 500 mA·g-1, stable and long-life cycle performance (170 cycles) has been realized in the Li-O2 batteries with MOF-801 protection layer, which is 2.88 times longer than those without protection. The batteries with MOF-801 protection layer also deliver a high discharge specific capacity of 8935 mAh·g-1. This unique protection layer design strategy illustrates fresh insight towards protection strategy in alkali metal anode batteries.

Cite this article

Yu Yue , Zhang Xinbo . Porous Metal-Organic Frameworks Lithium Metal Anode Protection Layer towards Long Life Li-O2 Batteries[J]. Acta Chimica Sinica, 2020 , 78(12) : 1434 -1440 . DOI: 10.6023/A20070290

References

[1] Yang, X. Y.; Feng, X. L.; Jin, X.; Shao, M. Z.; Yan, B. L.; Yan, J. M.; Zhang, Y.; Zhang, X. B. Angew. Chem. Int. Ed. 2019, 58, 16411.
[2] Wang, X.; Li, Y.; Bi, X.; Ma, L.; Wu, T.; Sina, M.; Wang, S.; Zhang, M.; Alvarado, J.; Lu, B.; Banerjee, A.; Amine, K.; Lu, J.; Meng, Y. S. Joule 2018, 2, 2381.
[3] Sun, Y.; Zhao, Y.; Wang, J.; Liang, J.; Wang, C.; Sun, Q.; Lin, X.; Adair, K. R.; Luo, J.; Wang, D.; Li, R.; Cai, M.; Sham, T. K.; Sun, X. Adv. Mater. 2019, 31, e1806541.
[4] Li, Z.; Liu, K.; Fan, K.; Yang, Y.; Shao, M.; Wei, M.; Duan, X. Angew. Chem. Int. Ed. 2019 58, 3962.
[5] Lei, X.; Liu, X.; Ma, W.; Cao, Z.; Wang, Y.; Ding, Y. Angew. Chem. Int. Ed. 2018, 57, 16131.
[6] Kang, T.; Wang, Y.; Guo, F.; Liu, C.; Zhao, J.; Yang, J.; Lin, H.; Qiu, Y.; Shen, Y.; Lu, W.; Chen, L. ACS Central Sci. 2019, 5, 468.
[7] Mun, S. K.; Deepika; Seung, H. L.; Min, S. K.; Ji, H. R.; Kwang, R. L.; Lynden, A. A.; Won, I. C. Sci. Adv. 2019, 5, eaax5587.
[8] Bay, M. C.; Wang, M.; Grissa, R.; Heinz, M. V. F.; Sakamoto, J.; Battaglia, C. Adv. Energy Mater. 2019, 10, 1902899.
[9] Yu, Y.; Yin, Y.-B.; Ma, J.-L.; Chang, Z.-W.; Sun, T.; Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Energy Storage Mater. 2019, 18, 382.
[10] Yu, Y.; Zhang, X.-B. Matter 2019, 1, 881.
[11] Tong, B.; Huang, J.; Zhou, Z.; Peng, Z. Adv. Mater. 2018, 30, 1704841.
[12] Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
[13] Liu, Z.; Li, W.; Liu, H.; Zhuang, X.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
[14] Wang, L.; Yang, G.; Wang, J.; Wang, S.; Peng, S.; Yan, W. Acta Chim. Sinica 2018, 76, 666(in Chinese). (王玲, 杨国锐, 王嘉楠, 王思岚, 彭生杰, 延卫, 化学学报, 2018, 76, 666.)
[15] Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[16] Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chinese J. Chem. 2020, 38, 509.
[17] Zheng, S.; Li, X.; Yan, B.; Hu, Q.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H. Adv. Energy Mater. 2017, 7, 1602733.
[18] Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Joule 2018, 2, 2235.
[19] Liang, Z.; Qu, C.; Guo, W.; Zou, R.; Xu, Q. Adv. Mater. 2018, 30, e1702891.
[20] Li, S.; Dong, Y.; Zhou, J.; Liu, Y.; Wang, J.; Gao, X.; Han, Y.; Qi, P.; Wang, B. Energy Environ. Sci. 2018, 11, 1318.
[21] Zhu, M.; Li, B.; Li, S.; Du, Z.; Gong, Y.; Yang, S. Adv. Energy Mater. 2018, 8, 1703505.
[22] Wang, Z.; Wang, Z.; Yang, L.; Wang, H.; Song, Y.; Han, L.; Yang, K.; Hu, J.; Chen, H.; Pan, F. Nano Energy 2018, 49, 580.
[23] Wang, L.; Zhu, X.; Guan, Y.; Zhang, J.; Ai, F.; Zhang, W.; Xiang, Y.; Vijayan, S.; Li, G.; Huang, Y.; Cao, G.; Yang, Y.; Zhang, H. Energy Storage Mater. 2018, 11, 191.
[24] Jiang, Z.; Liu, T.; Yan, L.; Liu, J.; Dong, F.; Ling, M.; Liang, C.; Lin, Z. Energy Storage Mater. 2018, 11, 267.
[25] He, Y.; Qiao, Y.; Chang, Z.; Zhou, H. Energy Environ. Sci. 2019, 12, 2327.
[26] He, Y.; Chang, Z.; Wu, S.; Qiao, Y.; Bai, S.; Jiang, K.; He, P.; Zhou, H. Adv. Energy Mater. 2018, 8, 1802130.
[27] Deng, H.; Chang, Z.; Qiu, F.; Qiao, Y.; Yang, H.; He, P.; Zhou, H. Adv. Energy Mater. 2020, 10, 1903953.
[28] Chu, F.; Hu, J.; Wu, C.; Yao, Z.; Tian, J.; Li, Z.; Li, C. ACS Appl. Mater. Inter. 2019, 11, 3869.
[29] Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. Energy Environ. Sci. 2020, 13, 1197.
[30] Cao, L.; Lv, F.; Liu, Y.; Wang, W.; Huo, Y.; Fu, X.; Sun, R.; Lu, Z. Chem. Commun. 2015, 51, 4364.
[31] Bai, S.; Sun, Y.; Yi, J.; He, Y.; Qiao, Y.; Zhou, H. Joule 2018, 2, 2117.
[32] Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nat. Energy 2016, 1, 16094.
[33] Hanikel, N.; Prevot, M. S.; Yaghi, O. M. Nat. Nanotech. 2020, 15, 348.
[34] Farhad, F.; Markus, J. K.; Eugene, A. K.; Peter, J. W.; Yang, J. J.; Omar, M. Y. Sci. Adv. 2018, 4, eaat3198.
[35] Choi, J. I.; Chun, H.; Lah, M. S. J. Am. Chem. Soc. 2018, 140, 10915.
[36] Amandine, C.; Youssef, B.; Karim, A.; Prashant, M. B.; Renjith, S. P.; Aleksander, S.; Charlotte, M. C.; Guillaume, M.; Mohamed, E. Science 2017, 356, 731.
[37] Zhang, J.; Bai, H. J.; Ren, Q.; Luo, H. B.; Ren, X. M.; Tian, Z. F.; Lu, S. ACS Appl. Mater. Inter. 2018, 10, 28656.
[38] Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369.
[39] Li, F.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H. Chem. Commun. 2013, 49, 1175.
[40] Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178.
[41] Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.
[42] Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. J. Phys. Chem. Lett. 2013, 4, 1060.
[43] Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J.; Thompson, C. V.; Shao-Horn, Y. Energy Environ. Sci. 2013, 6, 2518.
Outlines

/