Dielectric Relaxation Triggered by Guest Water Molecule Based on the {(Me2NH2)2[Fe2(ox)2Cl4 ]•H2 O}n(ox=oxalate)
Received date: 2020-08-29
Online published: 2020-10-20
Supported by
the National Natural Science Foundation of China(21431005); the National Natural Science Foundation of China(21721001); the National Natural Science Foundation of China(21571150)
It is well known that water is one of the most important chemical constituent in the nature, and thus is regarded as the genesis of life. Meanwhile, water plays an irreplaceable role in biology process, such as regulating the affinity between fatty acids and alkyl chains and controlling the conformation of DNA. In the crystal chemistry, water molecules in compounds will also significantly affect its structure, physical and chemical properties. Among them, single crystal to single crystal (SCSC) transformations induced by water molecules have attracted great attention, because those transformations often change the physical properties such as magnetic, dielectric and proton conduction. More importantly, it is facile to obtain detailed structural information, which leads to more directly and better understanding the transformation mechanism and structure-properties relationship. In this work, we report the SCSC transformation in the compound of {(Me2NH2)2- [Fe2(ox)2Cl4]•H2O} n (ox=oxalate) ( 1•H2O), which was prepared through the hydrothermal reaction of oxalate and FeCl3 in the presence of dimethylamine chloride. Under vacuum and heating conditions, 1•H2O underwent SCSC transformations, formed compound 1. 1•H2O and 1 were characterized by X-ray single-crystal diffraction, powder X-ray diffraction, magnetic, dielectric and thermogravimetric analysis. Magnetic studies on 1•H2O and 1 show that the presence or absence of guest water molecules had no significant effect on their magnetic interaction. Investigation on the dielectric properties of 1•H2O and 1 reveals that the presence of guest water molecules can influence the dynamic relaxation process of guest amine and water in the compound. Compound 1•H2O exhibited three dielectric relaxations at 250 K, 80 K and 50 K respectively, while 1 only showed a single relaxation process at 80 K. This work sheds light on the further exploration of SCSC transformations associated with the dielectric relaxation.
Key words: dielectric relaxation; SCSC structural transformation; water; magnetism
Bin Wang , Wen Tang , Haixia Zhao , Lasheng Long , Lansun Zheng . Dielectric Relaxation Triggered by Guest Water Molecule Based on the {(Me2NH2)2[Fe2(ox)2Cl4 ]•H2 O}n(ox=oxalate)[J]. Acta Chimica Sinica, 2021 , 79(1) : 119 -125 . DOI: 10.6023/A20080397
[1] | Matsuoka, S.; Sugiyama, S.; Matsuoka, D.; Hirse, M.; Lethu, S.; Ano, H.; Hara, T.; Ichihara, O.; Kimura, S.R.; Murakami, S. Angew. Chem. Int. Ed. 2015, 127, 1528. |
[2] | Hall, J.P.; Sanchez-weatherby, J.; Alberti, C.; Quimper, C.H.; O`Sullivan, K.; Brazier, J.A.; Winter, G.; Sorensen, T.; Kelly, J.M.; Cardin, D.J.; Cardin, C.J. J. Am. Chem. Soc. 2014, 136, 17505. |
[3] | Mitusińska, K.; Magdziarz, T.; Bzówka, M.; Stańczak, A.; Góra, A. Biomolecules 2018, 8, 143. |
[4] | Mitusińska, K.; Raczyńska, A.; Bzówka, M.; Bagrowska, W.; Góra, A. Comput. Struct. Biotechnol. J. 2020, 18, 355. |
[5] | Darby, J.F.; Hopkins, A.P.; Shimizu, S.; Roberts, S.M.; Brannigan, J.A.; Turkenburg, J.P.; Thomas, G.H.; Hubbard, R.E.; Fischer, M. J. Am. Chem. Soc . 2019, 141, 15818. |
[6] | Zhang, J.P.; Liao, P.Q.; Zhou, H.L.; Lin, R.B.; Chen, X.M. Chem. Soc. Rev. 2014, 43, 5789. |
[7] | Zhang, W.X.; Xue, W.; Chen, X.M. Inorg. Chem. 2011, 50, 309. |
[8] | Bhattacharya, S.; Bhattacharyya, A.J.; Natarajan, S. Inorg. Chem . 2015, 54, 1254. |
[9] | Konavarapu, S.K.; Goswami, A.; Kumar, A.G.; Banerjee, S.; Biradha, K. Inorg. Chem. Front. 2019, 6, 184. |
[10] | Tang, B.Z. Acta Phys.-Chim. Sin . 2020, 36, 2001037. |
[10] | 唐本忠, 物理化学学报, 2020, 36, 2001037. |
[11] | Wang, X.P.; Chen, W.M.; Qi, H.; Li, X.Y.; Rajnák, C.; Feng, Z.Y.; Kurmoo, M.; Boča, R.; Jia, C.J.; Tung, C.H.; Sun, D. Chem. Eur. J. 2017, 23, 7990. |
[12] | Omoto, K.; Nakae, T.; Nishio, M.; Yamanoi, Y.; Kasai, H.; Nishibori, E.; Mashimo, T.; Seki, T.; Ito, H.; Nakamura, K.; Kobayashi, N.; Nakayama, N.; Goto, H.; Nishihara, H. J. Am. Chem. Soc. 2020, 142, 12651. |
[13] | Ferna?ndez-Navarro, L.; Iturrospe, A.; Reinoso, S.; Artetxe, B.; Ruiz-Bilbao, E.; Felices, L.S.; Gutie?rrez-Zorrilla, J.M. Cryst. Growth Des . 2020, 20, 3499. |
[14] | Pisac?ic?, M.; Kodrin, I.; Matijakovic?, N.; Chatterjee, N.; Oliver, C.L.; Kukovec, B.M.; Đakovic?, M. Cryst. Growth Des . 2020, 20, 401. |
[15] | Wang, L.F.; Zhuang, W.M.; Huang, G.Z.; Chen, Y.C.; Qiu, J.Z.; Ni, Z.P.; Tong, M.L. Chem. Sci. 2019, 10,7496. |
[16] | Ge, C.; Liu, J.; Ye, X.; Han, Q.X.; Zhang, L.L.; Cui, S.Y.; Guo, Q.; Liu, G.F.; Liu, Y.; Tao, X.T. J. Phys. Chem. C 2018, 122, 15744. |
[17] | Wu, X.W.; Pan, F.; Yin, S.; Ge, J.Y.; Jin, G.X.; Wang, P.; Ma, J.P. CrystEngComm 2018, 20, 3955. |
[18] | Jin, M.; Sumitani, T.; Sato, H.; Seki, T.; Ito, H. J. Am. Chem. Soc. 2018, 140, 2875. |
[19] | Wang, H.Y.; Su, J.; Ma, J.P.; Yu, F.; Leong, C.F.; Deanna, M.D.; D’Alessandro, D.M.; Kurmoo, M.; Zuo, J.L. Inorg. Chem . 2019, 58, 8657. |
[20] | Ge, J.Y.; Chen, Z.Y.; Zhang, L.; Liang, X.; Su, J.; Kurmoo, M.; Zuo, J.L. Angew. Chem. Int. Ed . 2019, 58, 8789. |
[21] | Liu, J.L.; Liu, W.; Huang, G.Z.; Tong, M.L. Sci. Bull . 2015, 60, 447. |
[22] | Li, J.; Yang, L.; Yin, L.; Jiang, S.D.; OuYang, Z.W.; Zhang, Y.Q.; Wang, Z.X.; Song, Y. J. Inorg. Chem. 2020, 36, 1123. |
[22] | 李晶, 杨莉. 尹磊, 蒋尚达, 欧阳钟文, 张义权, 王振兴, 宋友, 无机化学学报, 2020, 36, 1123. |
[23] | Zhao, J.P.; Wang, W.W.; Han, S.D; Li, Q.W.; Li, N.; Liu, F.C.; Bu, X.H. Acta Chim. Sinica |
[23] | 赵炯鹏, 王玮玮, 韩松德, 李泉文, 李娜, 刘福臣, 卜显和, 化学学报, |
[24] | Zhao, H.X.; Liu, J.X.; Long, L.S.; Bokov, A.A.; Ye, Z.G.; Huang, R.B.; Zheng, L.S. J. Phys. Chem. C 2012, 116, 14199. |
[25] | Xu, H.R.; Zhang, Q.C.; Ren, Y.P.; Zhao, H.X.; Long, L.S.; Huang, R.B.; Zheng, L.S. CrystEngComm 2011, 13, 6361. |
[26] | Coronado, E.; Galán-Mascarós, J.R.; Gómez-García, C.J.; Martí- Gastaldo, C.Inorg. Chem. 2005, 44, 6197. |
[27] | Asaji, T.; Ashitomi, K. J. Phys. Chem. C 2013, 117, 10185. |
[28] | Mączka, M.; Gągor, A.; Macalik, B.; Pikul, A.; Ptak, M.; Hanuza, J. Inorg. Chem. 2014, 53, 457. |
[29] | Mączka, M.; Kadłuban?ski, P.; Freire, P.T.C.; Macalik, B.; Paraguassu, W.; Hermanowicz, K.; Hanuza, J. Inorg. Chem. 2014, 53, 9615. |
[30] | Armentano, D.; Mastropietro, T.F.; Munno, G.D.; Rossi, P.; Lloret, F.; Julve, M. Inorg. Chem. 2008, 47, 3772. |
[31] | Fisher, M.E. Am. J. Phys. 1964, 32, 343. |
[32] | Demeshko, S.; Leibeling, G.; Dechert, S.; Fuchs, S.; Pruschke, T.; Meyer, F. ChemPhysChem 2007, 8, 405. |
[33] | Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. Appl. Cryst . 2009, 42, 339. |
[34] | Sheldrick, G.M. Acta Cryst. 2008, A64, 112. |
[35] | Sheldrick, G.M. Acta Cryst. 2015, C71, 3. |
/
〈 |
|
〉 |