Communication

Copper-Catalyzed Enantioselective Aminoboration of Styrenes with 1,2-Benzisoxazole as Nitrogen Source

  • Huang Hao ,
  • Lin Huaxin ,
  • Wang Min ,
  • Liao Jian
Expand
  • a Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-09-14

  Online published: 2020-10-29

Supported by

Project supported by the National Nature Science Foundation of China (No. 21871251) and the Biological Resources Programme, Chinese Academy of Sciences (No. KFJ-BRP-008).

Abstract

Organoboron compounds are important intermediates in organic synthesis because of their high utilities for C—C and C—X bond formations. Transition metal-catalyzed borylative difunctionalization of alkenes, which can simultaneously introduce C—B, C—C or C—X bonds, could directly construct highly functionalized organoboron in one step. Among these reactions, copper catalyzed enantioselective aminoboration of styrenes is an efficient approach to generate enantioriched β-aminoboronate which is a class of useful chiral compounds. In this work, employing styrenes as substrates, 1,2-benzisoxazole as an electrophilic primary amine source, bis(pinacolato)diboron (B2pin2) as boron source and LiOCH3 as base, an enantioselective Cu-catalyzed aminoboration of styrenes by using a chiral sulfoxide-phosphine (SOP) ligand was developed, and a board range of chiral β-aminoalkylboranes, which could be readily converted to a class of valuable β-hydroxylalkylamines, were accessed with high yields and ee values. A general procedure for this aminoboration of styrenes is described in the following: in a glove box, CuI (0.05 mmol), chiral sulfoxide phosphine ligand L1 (0.06 mmol), and 2 mL of anhydrous tetrahydrofuran were added into a flame-dried tube. The resulting mixture was stirred at room temperature for 30 min. Then bis(pinacolato)diboron (B2pin2) (0.75 mmol), LiOCH3 (1.25 mmol), styrene 1 (0.5 mmol), 1,2-benzisoxazole (0.75 mmol) and another 2 mL of THF were added into the reaction system in sequence. The reaction tube was removed out from the glove box and stirred at 20 ℃ for 12 h. After the reaction was finished, the NMR yield was firstly determined with dimethyl terephthalate (9.7 mg, 0.05 mmol) as internal standard, then, the crude product was recovered and purified with a preparative TLC which was alkalized with triethylamine to give the desired β-aminoboronates in moderate to good yields (47%~84%) and enantioselectivities (81%~99%). To demonstrate the utility of this reaction, β-boronate primary amine could be easily obtained by removing the Schiff base group of β-aminoboronate 3 under the methanol solution of hydroxylamine hydrochloride, which could be further oxidized to give corresponding chiral β-amino alcohol in moderate yield (48%).

Cite this article

Huang Hao , Lin Huaxin , Wang Min , Liao Jian . Copper-Catalyzed Enantioselective Aminoboration of Styrenes with 1,2-Benzisoxazole as Nitrogen Source[J]. Acta Chimica Sinica, 2020 , 78(11) : 1229 -1234 . DOI: 10.6023/A20090424

References

[1] (a) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents, Academic Press:London, 1988. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (c) Davison, M.; Hughes, A. K.; Marder, T. B.; Wade, K. Contemporary Boron Chemistry; RSC:Cambridge, U.K., 2000. (d) Boronic Acids, 2nd ed.; Hall, D. G., Ed.; Wiley-VCH:Weinheim, Germany, 2011. (e) Yang, J.; Deng, M.; Yu, T. Chin. J. Org. Chem. 2013, 33, 693(in Chinese). (杨军, 邓敏智, 于涛, 有机化学, 2013, 33, 693). (f) Wu, Y.; Dou, Z.; Wu, C.; Chen, H.; Zhang, Z.; Wang, X.; Yin, Z.; Song, X.; He, C.; Yue, G. Chin. J. Org. Chem. 2018, 38, 2896(in Chinese). (吴瑶, 豆正杰, 吴彩梅, 陈华保, 张祖民, 王显祥, 殷中琼, 宋旭, 贺常亮, 乐贵洲, 有机化学, 2018, 38, 2896.) (g) Zhu, D.; Xu, M.; Chin. J. Org. Chem. 2020, 40, 255(in Chinese). (祝东星, 徐明华, 有机化学, 2020, 40, 255.) (h) Guan, H.; Chen, L.; Liu L. Acta Chim. Sinica 2018, 76, 440(in Chinese). (关弘浩, 陈磊, 刘磊, 化学学报, 2018, 76, 440.) (i) He, S.; Pi, J.; Li, Y.; Lu, X.; Fu, Y. Acta Chim. Sinica 2018, 76, 956(in Chinese). (何世江, 皮静静, 李炎, 陆熹, 傅尧, 化学学报, 2018, 76, 956.) (j) Wang, D.; He, Y.; Dai, H.; Huang, C.; Yuan, X.-A.; Xie, J. Chin. J. Chem. 2020, 38, 1497. (k) Bai, Y.; Cui, C. Acta Chim. Sinica 2020, 78, 763(in Chinese). (白云平, 崔春明, 化学学报, 2020, 78, 763.)
[2] (a) Gorovoy, A. S.; Gozhina, O.; Svendsen, J.-S.; Tetz, G. V.; Domorad, A.; Tetz, V. V.; Lejon, T. J. Pept. Sci. 2013, 19, 613. (b) Gorovoy, A. S.; Gozhina, O. V.; Svendsen, J. S.; Domorad, A. A.; Tetz, G. V.; Tetz, V. V.; Lejon, T. Chem. Biol. Drug Des. 2013, 81, 408.
[3] (a) Solé, G.; Gulyás, H.; Fernández, E. Chem. Commun. 2012, 48, 3769. (b) He, Z. T.; Zhao, Y. S.; Tian, P.; Wang, C. C.; Dong, H. Q.; Lin, G. Q. Org. Lett. 2014, 16, 1426. (c) Takeda, Y.; Kuroda, A.; Sameera, W. M. C.; Morokuma, K.; Minakata, S. Chem. Sci. 2016, 7, 6141. (d) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18, 1210. (e) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem., Int. Ed. 2017, 56, 11584. (f) Li, X.; Hall, D. G. Angew. Chem., Int. Ed. 2018, 57,10304. (g) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663. (h) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 9, 8503. (i) Li, X.; Hall, D. G. J. Am. Chem. Soc. 2020, 142, 9063.
[4] Reviews:(a) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Tetrahedron 2015, 71, 2183. (b) Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 2249(in Chinese). (刘媛媛, 张万斌, 有机化学, 2016, 36, 2249.) (c) Whyte, A.; Torelli, A.; Mirabi, B.; Zhang, A.; Lautens, M. ACS Catal. 2020, 10, 11578.
[5] (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. (b) Sakae, R.; Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1228. (c) Parra, A.; Amenos, L.; Guisan-Ceinos, M.; Lopez, A.; Garcia Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833. (d) Sakae, R.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137, 6460. (e) Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2015, 54, 613. (f) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400. (g) Nishikawa, D.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 4856. (h) Jiang, H. C.; Tang, X. Y.; Shi, M. Chem. Commun. 2016, 52,5273. (i) Huo, J.; Xue, Y.; Wang, J. Chem. Commun. 2018, 54, 12266. (j) Kato, K.; Hirano, K.; Miura, M. Chem. Eur. J. 2018, 24, 5775.
[6] (a) Guo, S.; Yang, J. C.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 15976. (b) Feng, S.; Hao, H.; Liu, P.; Buchwald, S. L. ACS Catal. 2019, 10, 282. (c) Guo, S.; Zhu, J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2020, 59, 20841.
[7] (a) Casey, M. L.; Kemp, D. S.; Paul, K. G.; Cox, D. J. Org. Chem. 1973, 38, 2294.
[8] (a) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7, 2425. (b) Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang, M.; Liao, J. J. Am. Chem. Soc. 2015, 137, 13760. (c) Jia, T.; Cao, P.; Wang, D.; Lou, Y.; Liao, J. Chem. Eur. J. 2015, 21, 4918. (d) Zhang, Y.; Wang, M.; Cao, P.; Liao, J. Acta Chim. Sinica 2017, 75, 794(in Chinese). (张涌灵, 王敏, 曹鹏, 廖建, 化学学报, 2017, 75, 794.) (e) Chen, B.; Cao, P.; Liao, Y.; Wang, M.; Liao, J. Org. Lett. 2018, 20, 1346. (f) Wang, B.; Wang, X.; Yin, X.; Yu, W.; Liao, Y.; Ye, J.; Wang, M.; Liao, J. Org. Lett. 2019, 21, 3913. (g) Liao, Y.; Yin, X.; Wang, X.; Yu, W.; Fang, D.; Hu, L.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2020, 59, 1176.
[9] (a) Noshita, M.; Shimizu, Y.; Morimoto, H.; Ohshima, T. Org. Lett. 2016, 18, 6062.
[10] (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006, 25, 2405. (b) Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., Int. Ed. 2016, 55, 13854. (c) Tobisch, S. Chem. Eur. J. 2017, 23, 17800.
Outlines

/