Article

Preparation and Photocatalytic Hydrogen Production of B, N Co-doped In2O3/TiO2

  • Li Chen ,
  • Chen Fenghua ,
  • Ye Li ,
  • Li Wei ,
  • Yu Han ,
  • Zhao Tong
Expand
  • a Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
    b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Received date: 2020-07-20

  Online published: 2020-11-04

Supported by

Project supported by the National Natural Science Foundation of China (No. 21604090).

Abstract

In order to improve light absorption range of TiO2 and utilization rate of photogenerated carriers, we use B, N co-doping and In2O3 blending to modify the TiO2 photocatalyst. Sample preparation is conducted through polymer precursor method and uniform distribution of the components is ensured. Polyethylene glycol (PEG) is added at the beginning of sample preparation and removed during the annealing process at high temperatures. X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission microscope (HRTEM), specific surface area and pore structure analyzer, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible absorption spectrum and photoluminescence (PL) spectroscopy are used to characterize the products obtained. B and N elements have been detected in the lattice of TiO2. Heterojunction structure of In2O3 and TiO2 are also observed. Formation of Ti-N-B and Ti-O-B structure is exhibited in this system. Interstitial doping of N is also observed. These factors contribute to narrow the band gap from 3.09 eV of P25 to 2.71 eV of IT-500 (the modified sample annealed at 500℃). With the introduction and pyrolysis of porogen PEG, mesoporous structure is successfully constructed. Visible light absorption range has been greatly broadened in this modified TiO2 based material. Utilization rate of photogenerated carriers has also been enhanced. When the catalyst is used in the photocatalytic hydrogen production experiment, under the irradiation of visible light (>380 nm), hydrogen production rate of IT-500 reaches 5961 μmol·g-1·h-1, which is far superior to commercial TiO2 and most of the TiO2 prepared by single modification method. The hydrogen production rate is maintained in the 5-circle test after the catalyst is separated and recycled. When the B, N-In2O3/TiO2 polymer precursor is gas sprayed, which uses polyvinylpyrrolidone as spinning aid, ethanol and acetic acid as solvents, nanofiber sponge can be obtained and used for hydrogen production. Hydrogen production rate of this material reaches 1186 μmol·g-1·h-1 and keeps 97% after 5-cycle test, which shows high potential for commercial use of this material.

Cite this article

Li Chen , Chen Fenghua , Ye Li , Li Wei , Yu Han , Zhao Tong . Preparation and Photocatalytic Hydrogen Production of B, N Co-doped In2O3/TiO2[J]. Acta Chimica Sinica, 2020 , 78(12) : 1448 -1454 . DOI: 10.6023/A20070322

References

[1] Fujishima, A.; Honda, K. Nature 1972, 238, 37.
[2] Li, X.; Zhang, T. Y.; Wang, T.; Zhao, Y. X. Acta Chim. Sinica 2019, 77, 1075(in Chinese). (李鑫, 张太阳, 王甜, 赵一新, 化学学报, 2019, 77, 1075.)
[3] Yu, H.; Ye, L.; Zhang, T.; Zhou, H.; Zhao, T. RSC Adv. 2017, 7, 15265.
[4] Yu, H.; Chen, F.; Ye, L.; Zhou, H.; Zhao, T. J. Mater. Sci. 2019, 54, 10191.
[5] Long, H. J.; Wang, E. J.; Dong, J. Z.; Wang, L. L.; Cao, Y. Q.; Yang, W. S.; Cao, Y. A. Acta Chim. Sinica 2009, 67, 1533(in Chinese). (龙绘锦, 王恩君, 董江舟, 王玲玲, 曹永强, 杨文胜, 曹亚安, 化学学报, 2009, 67, 1533.)
[6] Guo, Y.; Li, Y. R.; Wang, C. M.; Long, R.; Xiong, Y. J. Acta Chim. Sinica 2019, 77, 520(in Chinese). (郭宇, 李燕瑞, 王成名, 龙冉, 熊宇杰, 化学学报, 2019, 77, 520.)
[7] Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746.
[8] Marchal, C.; Cottineau, T.; Mendez-Medrano, M. G.; Colbeau- Justin, C.; Caps, V.; Keller, V. Adv. Energy Mater. 2018, 8, 1702142.
[9] Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681(in Chinese). (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
[10] Perillo, P. M.; Rodríguez, D. F. J. Alloys Compd. 2016, 657, 765.
[11] Seo, M.-H.; Yuasa, M.; Kida, T.; Huh, J.-S.; Yamazoe, N.; Shimanoe, K. Sensor. Actuat. B-Chem. 2011, 154, 251.
[12] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.
[13] Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919.
[14] Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. J. Am. Chem. Soc. 2009, 131, 4078.
[15] Erwin, W. R.; Zarick, H. F.; Talbert, E. M.; Bardhan, R. Energy Environ. Sci. 2016, 9, 1577.
[16] Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Appl. Catal. B-Environ. 2019, 244, 1021.
[17] Chai, Z.; Zeng, T. T.; Li, Q.; Lu, L. Q.; Xiao, W. J.; Xu, D. J. Am. Chem. Soc. 2016, 138, 10128.
[18] Huang, H.; Jin, Y.; Chai, Z.; Gu, X.; Liang, Y.; Li, Q.; Liu, H.; Jiang, H.; Xu, D. Appl. Catal. B-Environ. 2019, 257, 117869.
[19] Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. J. Phys. Chem. B 2005, 109, 11414.
[20] Geng, H.; Yin, S.; Yang, X.; Shuai, Z.; Liu, B. J. Phys. Condens. Matter 2006, 18, 87.
[21] Liu, G.; Zhao, Y.; Sun, C.; Li, F.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2008, 47, 4516.
[22] Finazzi, E.; Di Valentin, C.; Pacchioni, G. J. Phys. Chem. C 2009, 113, 3382.
[23] Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908.
[24] Di Valentin, C.; Pacchioni, G.; Selloni, A. Chem. Mater. 2005, 17, 6656.
[25] Huang, D.-G.; Liao, S.-J.; Liu, J.-M.; Dang, Z.; Petrik, L. J. Photochem. Photobiol., A 2006, 184, 282.
[26] Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.
[27] Park, H.; Choi, W. J. Phys. Chem. B 2004, 108, 4086.
[28] Bidaye, P. P.; Khushalani, D.; Fernandes, J. B. Catal. Lett. 2009, 134, 169.
[29] Marschall, R. Adv. Funct. Mater. 2014, 24, 2421.
[30] Li, X.; Zhou, X.; Guo, H.; Wang, C.; Liu, J.; Sun, P.; Liu, F.; Lu, G. ACS Appl. Mater. Interfaces 2014, 6, 18661.
[31] Wang, M.; Han, J.; Xiong, H.; Guo, R. Langmuir 2015, 31, 6220.
[32] He, Q.; Sun, H.; Shang, Y.; Tang, Y.; She, P.; Zeng, S.; Xu, K.; Lu, G.; Liang, S.; Yin, S.; Liu, Z. Appl. Surf. Sci. 2018, 441, 458.
[33] Hu, W.; Zhou, W.; Zhang, K.; Zhang, X.; Wang, L.; Jiang, B.; Tian, G.; Zhao, D.; Fu, H. J. Mater. Chem. A 2016, 4, 7495.
[34] Ding, D.; Liu, K.; He, S.; Gao, C.; Yin, Y. Nano Lett. 2014, 14, 6731.
[35] Gao, Y. M.; Shen, H. S.; Dwight, K.; Wold, A. Mater. Res. Bull. 1992, 27, 1023.
[36] Zhang, X.; Lei, L. J. Hazard. Mater. 2008, 153, 827.
[37] Zhang, L.; Wang, L.; Wei, Y.; Zhang, M.; Jiang, H.; Li, J.; Li, S.; Li, J. Eur. J. Inorg. Chem. 2015, 2015, 5039.
[38] Soares, G. B.; Bravin, B.; Vaz, C. M. P.; Ribeiro, C. Appl. Catal. B-Environ. 2011, 106, 287.
[39] Tan, Y.; Shu, Z.; Zhou, J.; Li, T.; Wang, W.; Zhao, Z. Appl. Catal. B-Environ. 2018, 230, 260.
[40] Wang, X.; Zhang, J.; Wang, L.; Li, S.; Liu, L.; Su, C.; Liu, L. J. Mater. Sci. Technol. 2015, 31, 1175.
[41] Yang, Y.; Liang, Y.; Wang, G.; Liu, L.; Yuan, C.; Yu, T.; Li, Q.; Zeng, F.; Gu, G. ACS Appl. Mater. Interfaces 2015, 7, 24902.
[42] Cavalcante, R. P.; Dantas, R. F.; Bayarri, B.; González, O.; Giménez, J.; Esplugas, S.; Machulek, A. Catal. Today 2015, 252, 27.
[43] Pujilaksono, B.; Klement, U.; Nyborg, L.; Jelvestam, U.; Hill, S.; Burgard, D. Mater. Charact. 2005, 54, 1.
[44] Mu, J.; Chen, B.; Zhang, M.; Guo, Z.; Zhang, P.; Zhang, Z.; Sun, Y.; Shao, C.; Liu, Y. ACS Appl. Mater. Interfaces 2012, 4, 424.
[45] Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. J. Phys. Chem. C 2007, 111, 6976.
[46] Xing, M.-Y.; Li, W.-K.; Wu, Y.-M.; Zhang, J.-L.; Gong, X.-Q. J. Phys. Chem. C 2011, 115, 7858.
[47] Patel, N.; Jaiswal, R.; Warang, T.; Scarduelli, G.; Dashora, A.; Ahuja, B. L.; Kothari, D. C.; Miotello, A. Appl. Catal. B-Environ. 2014, 150-151, 74.
[48] Ling, Q.; Sun, J.; Zhou, Q. Appl. Surf. Sci. 2008, 254, 3236.
[49] Feng, N.; Zheng, A.; Wang, Q.; Ren, P.; Gao, X.; Liu, S.-B.; Shen, Z.; Chen, T.; Deng, F. J. Phys. Chem. C 2011, 115, 2709.
[50] Zhang, K.; Wang, X.; He, T.; Guo, X.; Feng, Y. Powder Technol. 2014, 253, 608.
Outlines

/