Review

Lanthanide Luminescent Supramolecular Assembly Based on Cyclodextrin

  • Zhou Wei-Lei ,
  • Chen Yong ,
  • Liu Yu
Expand
  • a Nano Innovation Institute(NII), College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028000, China;
    b College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

Received date: 2020-10-22

  Online published: 2020-11-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672113, 21772099, 21861132001, 21971127) and the Doctoral Scientific Research Foundation of Inner Mongolia University for Nationalities (BS554).

Abstract

Lanthanide elements show great advantages in luminescence materials and are increasingly applied in the design of advanced functional luminescence materials due to their excellent luminescence characteristics, such as long-lived excited states, narrow emission bandwidths and large Stokes shift. Cyclodextrin, as the second generation supramolecular host molecule, is easy to be functionalized and specifically binds the luminescent guests, so it is widely used to construct supramolecular systems such as luminescent materials and fluorescence sensing probes. In this paper, based on the construction of supramolecular assemblies of lanthanide/cyclodextrin, the author reviews the recent research progress of different lanthanide/cyclodextrin luminescent materials, which will provide reference for the development of new multifunctional lanthanide luminescent materials. Finally, the scientific problems encountered by lanthanide luminescent materials are put forward, and the development direction of lanthanide/cylodextrin luminescent materials is prospected.

Cite this article

Zhou Wei-Lei , Chen Yong , Liu Yu . Lanthanide Luminescent Supramolecular Assembly Based on Cyclodextrin[J]. Acta Chimica Sinica, 2020 , 78(11) : 1164 -1176 . DOI: 10.6023/A20100486

References

[1] Bünzli, J.-C.G. Acc. Chem. Res. 2006, 39, 53.
[2] Eliseeva, S. V.; Bünzli, J.-C. G. Chem. Soc. Rev. 2010, 39, 189.
[3] Bünzli, J.-C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048.
[4] Faulkner, S.; Pope, S. J. A.; Burton-Pye, B. P. Appl. Spectrosc. Rev. 2005, 40, 1.
[5] Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371.
[6] Molander, G. A.; Romero, J. A. C. Chem. Rev. 2002, 102, 2161.
[7] Bettencourt-Dias, A.; Barber, P. S.; Bauer, S. J. Am. Chem. Soc. 2012, 134, 6987.
[8] McMahon, B. K.; Gunnlaugsson, T. J. Am. Chem. Soc. 2012, 134, 10725.
[9] Kotova, O.; Bradberry, S. J.; Savyasachi, A. J.; Gunnlaugsson, T. Dalton Trans. 2018, 47, 16377.
[10] Binnemans, K. Chem. Rev. 2009, 109, 4283.
[11] Hu, S.-J.; Guo, X. Q.; Zhou, L.-P.; Cai, L.-X.; Sun, Q.-F. Chinese J. Chem. 2019, 37, 657.
[12] Guan, X.; Li, Z.; Wang, L.; Liu, M.; Wang, K.; Yang, X.; Li, Y.; Hu, L.; Zhao, X.; Lai, S.; Lei, Z. Acta Chim. Sinica 2019, 77, 1278(in Chinese). (关晓琳, 李志飞, 王林, 刘美娜, 王凯龙, 杨学琴, 李亚丽, 胡丽丽, 赵小龙, 来守军, 雷自强, 化学学报, 2019, 77, 1278.)
[13] Liu, M.; Wu, Q.; Shi, H.; An, Z.; Huang, W. Acta Chim. Sinica 2018, 76, 246(in Chinese). (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.)
[14] Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 39, 681.
[15] Liu, Y.; Chen, Y. Chem. Soc. Rev. 2010, 39, 495.
[16] Chen, Y.; Huang, F.; Li, Z. T.; Liu, Y. Sci. China Chem. 2018, 61, 879.
[17] Phua, S. Z. F.; Yang, G.; Lim, W. Q.; Verma, A.; Chen, H.; Thanabalu, T.; Zhao, Y. ACS Nano 2019, 13, 4742.
[18] Phua, S. Z. F.; Xue, C.; Lim, W. Q.; Yang, G.; Chen, H.; Zhang, Y.; Wijaya, C. F.; Luo, Z.; Zhao, Y. Chem. Mater. 2019, 31, 3349.
[19] Chen, H.; Zeng, X.; Tham, H. P.; Phua, S. Z. F.; Cheng, W.; Zeng, W.; Shi, H.; Mei, L.; Zhao, Y. Angew. Chem., Int. Ed. 2019, 58, 7641.
[20] Zhang, Y.; Chen, Y.; Li, J.-J.; Liang, L.; Liu, Y. Acta Chim. Sinica 2018, 76, 622(in Chinese). (张依, 陈湧, 李晶晶, 梁璐, 刘育, 化学学报, 2018, 76, 622.)
[21] Liu, Y.; Chen, Y.; Zhang, H.-Y. Handbook of Macrocyclic Supramolecular Assembly, Springer, Singapore, 2020.
[22] Ma, X.; Wang, J.; Tian, H. Acc. Chem. Res. 2019, 52, 738.
[23] Turro, N. J.; Bolt, J. D.; Kuroda, Y.; Tabushi, I. Photochem. Photobiol. 1982, 35, 69.
[24] Chen, H.; Ma, X.; Wu, S.; Tian, H. Angew. Chem., Int. Ed.., 2014, 53, 14149.
[25] Wu, H.; Zhu, L.; Zhao, Y.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 11206.
[26] Huang, Z.; Ma, X. Cell Rep. Phys. Sci. 2020, 1, 100167.
[27] Li, J. J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. Adv. Mater. 2017, 29, 1701905.
[28] Yu, X.; Liang, W.; Huang, Q.; Wu, W.; Chruma, J. J.; Yang, C. Chem. Commun. 2019, 55, 3156.
[29] Lai, H.; Zhao, T.; Deng, Y.; Fan, C.; Wu, W.; Yang, C. Chin. Chem. Lett. 2019, 30, 1979.
[30] Kanagaraj, K.; Xiao, C.; Rao, M.; Fan, C.; Borovkov, V.; Cheng, G.; Zhou, D.; Zhong, Z.; Su, D.; Yu, X.; Yao, J.; Hao, T.; Wu, W.; Chruma, J. J.; Yang, C. iScience 2020, 23, 100927.
[31] Xu, W.; Liang, W.; Wu, W.; Fan, C.; Rao, M.; Su, D.; Zhong, Z.; Yang, C. Chem. Eur. J. 2018, 24, 16677.
[32] Rao, M.; Kanagaraj, K.; Fan, C.; Ji, J.; Xiao, C.; Wei, X.; Wu, W.; Yang, C. Org. Lett. 2018, 20, 1680.
[33] Zhang, Y.-M.; Han, M.; Chen, H.-Z.; Zhang, Y.; Liu, Y. Org. Lett. 2013, 15, 967.
[34] Ma, X.; Tian, H. Chem. Soc. Rev. 2010, 39, 70.
[35] Beutler, M.; Heintzmann, R. Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine, Springer, Berlin, 2005.
[36] Willner, I.; Goren, Z. J. Chem. Soc. Chem. Commun. 1983, 24, 1469.
[37] Pikramenou, Z.; Nocera, D. G. Inorg. Chem. 1992, 31, 532.
[38] Pikramenou, Z.; Johnson, K. M.; Nocera, D. G. Tetrahedron Lett. 1993, 34, 3531.
[39] Mortellaro, M. A.; Nocera, D. G. J. Am. Chem. Soc. 1996, 118, 7414.
[40] Michels, J. J.; Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 2056.
[41] Hsu, S.-H.; Yilmaz, M. D.; Blum, C.; Subramaniam, V.; Reinhoudt, D. N.; Velders, A. H.; Huskens, J. J. Am. Chem. Soc. 2009, 472, 12567.
[42] Yilmaz, M. D.; Hsu, S.-H.; Reinhoudt, D. N.; Velders, A. H.; Huskens, J. Angew. Chem., Int. Ed. 2010, 122, 6074.
[43] Hsu, S.-H.; Yilmaz, M. D.; Reinhoudt, D. N.; Velders, A. H.; Huskens, J. Angew. Chem., Int. Ed. 2013, 52, 714.
[44] Liu, Y.; Chen, G.-S.; Chen, Y.; Zhang, N.; Chen, J.; Zhao, Y.-L. Nano Lett. 2006, 478, 2196.
[45] Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9, 101.
[46] Orgiu, E.; Crivillers, N.; Herder, M.; Grubert, L.; Patzel, M.; Frisch, J.; Pavlica, E.; Duong, D. T.; Bratina, G.; Salleo, A.; Koch, N.; Hecht, S.; Samorì, P. Nat. Chem. 2012, 4, 675.
[47] Naumov, P.; Chizhik, S.; Panda, M. K.; Nath, N. K.; Boldyreva, E. Chem. Rev. 2015, 115, 12440.
[48] Zhang, L.; Ma, S.; Wang, H.; Liang, Y.; Zhang, Z. Acta Chim. Sinica 2020, 78, 865(in Chinese). (张澜, 马愫倩, 王寒冰, 梁云虹, 张志辉, 化学学报, 2020, 78, 865.)
[49] Russew, M.-M.; Hecht, S. Adv. Mater. 2010, 22, 3348.
[50] Zhang, L.; Zhong, X.; Pavlica, E.; Li, S.; Klekachev, A.; Bratina, G.; Ebbesen, T. W.; Orgiu, E.; Samorì, P. Nat. Nanotechnol. 2016, 11, 900.
[51] Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Chem. Soc. Rev. 2012, 41, 1754.
[52] Gelebart, A. H.; Mulder, D. J.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.; Selinger, R. L.; Broer, D. J. Nature 2017, 546, 632.
[53] Aida, T.; Meijer, E.; Stupp, S. Science 2012, 335, 813.
[54] Avestro, A.-J.; Belowich, M. E.; Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 5881.
[55] Li, Z.; Wang, G.; Wang, Y.; Li H. Angew. Chem., Int. Ed. 2018, 57, 2194.
[56] Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.
[57] D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585.
[58] Shang, M. M.; Li, C. X.; Lin, J. Chem. Soc. Rev. 2014, 43, 1372.
[59] Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclere, P. E. L. G.; Sijbesma, R. P.; Meijer, E. W.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2009, 131, 833.
[60] Wang, J.; Li, X.; Chu, H.; He, J.; Chen, Z. Chin. J. Org. Chem. 2019, 39, 3399(in Chinese). (王军, 李小成, 初红涛, 何进军, 陈志娇, 有机化学, 2019, 39, 3399.)
[61] Zhou, W.; Chen, Y.; Yu, Q.; Li, P.; Chen, X.; Liu, Y. Chem. Sci. 2019, 10, 3346.
[62] Bessa, P. C.; Casal, M.; Reis, R. L. J. Tissue Eng. Regener. Med. 2008, 2, 81.
[63] Hoffman, A. S. Adv. Drug Delivery Rev. 2012, 64, 18.
[64] Mandl, G. A.; Rojas-Gutierrez, P. A.; Capobianco, J. A. Chem. Commun. 2018, 54, 5847.
[65] Auzel, F. Chem. Rev. 2004, 104, 139.
[66] Wang, F.; Liu, X. G. Chem. Soc. Rev. 2009, 38, 976.
[67] Suyver, J. F.; Aebischer, A.; Biner, D. A.; Gerner, P.; Grimm, J.; Heer, S.; Kramer, K. W.; Reinhard, C.; Gudel, H. U. Opt. Mater. 2005, 27, 1111.
[68] Yu, M. X.; Li, F. Y.; Chen, Z. G.; Hu, H.; Zhan, C.; Yang, H.; Huang, C. H. Anal. Chem. 2009, 81, 930.
[69] Wu, S. W.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Proc. Natl. Acad. Sci. 2009, 106, 10917.
[70] Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Adv. Funct. Mater. 2009, 19, 853.
[71] Huang, Q. Acta Chim. Sinica 2020, 78, 968(in Chinese). (黄清明, 化学学报, 2020, 78, 968.)
[72] Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese). (熊麟, 凡勇, 张凡, 化学学报, 2019, 77, 1239.)
[73] Liu, Q.; Li, C.; Yang, T.; Yi, T.; Li, F. Chem. Commun. 2010, 46, 5551.
[74] Rong, P.; Yang, K.; Srivastan, A.; Kiesewetter, D. O.; Yue, X.; Wang, F.; Nie, L.; Bhirde, A.; Wang, Z.; Liu, Z. Theranostics 2014, 4, 229.
[75] Li, H.; Song, S. X.; Wang, W.; Chen, K. Z. Dalton Trans. 2015, 44, 16081.
[76] Tian, G.; Ren, W.; Yan, L.; Jian, S.; Gu, Z.; Zhou, L.; Jin, S.; Yin, W.; Li, S.; Zhao, Y. Small 2013, 9, 1929.
[77] Chen, Q.; Wang, C.; Cheng, L.; He, W.; Cheng, Z.; Liu, Z. Biomaterials 2014, 35, 2915.
[78] Wang, A.; Jin, W.; Chen, E.; Zhou, J.; Zhou, L.; Wei, S. Dalton Trans. 2016, 45, 3853.
[79] Fang, J.; Nakamura, H.; Maeda, H. Adv. Drug Delivery Rev. 2011, 63, 136.
[80] Torchilin, V. Adv. Drug Delivery Rev. 2011, 63, 131.
[81] Zhang, C.; Ni, D.; Liu, Y.; Yao, H.; Bu, W.; Shi, J. Nat. Nanotechnol. 2017, 12, 378.
[82] Zhao, M.; Li, B.; Wang, P.; Lu, L.; Zhang, Z.; Liu, L.; Wang, S.; Li, D.; Wang, R.; Zhang, F. Adv. Mater. 2018, 1804982.
[83] Gonçalves, M. S. T. Chem. Rev. 2009, 109, 190.
[84] Gu, B.; Zhou, Y.; Zhang, X.; Liu, X.; Zhang, Y.; Marks, R.; Zhang, H.; Liu, X.; Zhang, Q. Nanoscale 2016, 8, 276.
[85] Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293.
[86] Geraldes, C. F. G. C.; Laurent, S. Contrast Media Mol. Imaging 2009, 4, 1.
[87] Cabella, C.; Geninatti, C. S.; Corpillo, D.; Barge, A.; Ghirelli, C.; Bruno, E.; Lorusso, V.; Uggeri, F.; Aime, S. Contrast Media Mol. Imaging 2006, 1, 23.
[88] Kotková, Z.; Helm, L.; Kotek, J.; Hermanna, P.; Lukeš, I. Dalton Trans. 2012, 41, 13509.
[89] Weissleder, R.; Pittet, M. J. Nature 2008, 452, 580.
[90] Mart-Bonmat, L.; Sopena, R.; Bartumeus, P.; Sopena, P. Contrast Media Mol. Imaging 2010, 5, 180.
[91] Fredy, J. W.; Scelle, J.; Guenet, A.; Morel, E.; de Beaumais, S. A.; Menand, M.; Marvaud, V.; Bonnet, C. S.; Toth, E.; Sollogoub, M.; Vives, G.; Hasenknopf, B. Chem. Eur. J. 2014, 20, 10915.
[92] Fredy, J. W.; Scelle, J.; Ramniceanu, G.; Doan, B.-T.; Bonnet, C. S.; Toth, E.; Menand, M.; Sollogoub, M.; Vives, G.; Hasenknopf, B. Org. Lett. 2017, 19, 1136.
Outlines

/