“Bridge” Makes Differences to the Self-assembly of Block Copolymers
Received date: 2020-09-22
Online published: 2020-11-10
Supported by
National Natural Science Foundation of China(21925301)
To form “bridge” via the self-assembly of block copolymer provides a useful way for the fabrication of network structures of excellent mechanical properties, which is promising in applications. However, previous work has hardly paid attention to the impact of “bridge” on the self-assembly behavior of block copolymers. This account provides a review of a recent progress about the control of the self-assembly behaviors of block copolymers via the stretching degree of the bridging block. Accordingly, we have purposely designed BABCB linear multiblock copolymer. When BABCB copolymer self-assembles into binary mesocrystal structures (sphere or cylinder), the middle B-block connects a pair of A and C domains (“macromolecular atom” aggregated by blocks) naturally forming bridge. The stretching degree of the middle bridging B-block can be increased by reducing its length relative to the other two B-blocks, lowering the coordination numbers (CNs) of mesocrystal. Moreover, the asymmetry of CNs between A and C “macromolecular atoms” can be tuned by the asymmetry between the two end B-blocks. Abiding by the two principles, using self-consistent field theory (SCFT) we have predicted rich binary mesocrystals of equal and unequal CNs. Furthermore, we have extent the concept of “stretched bridge” into AB-type block copolymers. We have proposed the effect of combinatorial entropy to realize high-ratio bridging configurations in the self-assembled structures by AB-type block copolymers. By increasing the stretching degree of bridging blocks, we have successfully predicted nonclassical square array and graphene-like array of cylinders instead of the usual hexagonal array of cylinders. In future, it is hopeful to recast most of known atomic/ionic binary crystal structures or even beyond by considering topology and blending during the design of ABC-type block copolymers.
Key words: bridge; block copolymer; self-assembly; mesocrystal; self-consistent field theory
Weihua Li . “Bridge” Makes Differences to the Self-assembly of Block Copolymers[J]. Acta Chimica Sinica, 2021 , 79(2) : 133 -138 . DOI: 10.6023/A20090438
[1] | Bates F.S.; Fredrickson G.H. Ann. Rev. Phys. Chem. 1990, 41, 525. |
[2] | Hamley I.W. Prog. Polym. Sci. 2007, 32, 1152. |
[3] | Kim H.C.; Park S.M.; Hingsberg W.D. Chem. Rev. 2010, 110, 146. |
[4] | Li W.H.; Müller M. Prog. Polym. Sci. 2016, 54-55, 47. |
[5] | Bates F.S.; Hillmyer M.A.; Lodge T.P.; Bates C.M.; Delaney K.T.; Fredrickson G.H. Science 2012, 336, 434. |
[6] | Matsen M.W. Macromolecules 2012, 45, 2161. |
[7] | Liu D.; Wang Y.Y.; Sun Y.C.; Han Y.Y.; Cui J.; Jiang W. Chin. J. Polym. Sci. 2018, 36, 888. |
[8] | Liu K.; Yang C.M.; Yang B.M.; Zhang L.; Huang W.C.; Ouyang X.P.; Qi F.G.; Zhao N.; Bian F.G. Chin. J. Polym. Sci. 2020, 38, 92. |
[9] | Shi A.C. Development in Block Copolymer Science and Technology, Wiley, New York, 2004. |
[10] | Fredrickson G.H. The Equilibrium Theory of Inhomogeneous Polymers, Oxford University Press, Oxford, 2006. |
[11] | Matsen M.W.; Schick M. Phys. Rev. Lett. 1994, 72, 2660. |
[12] | Drolet F.; Fredrickson G.H. Phys. Rev. Lett. 1999, 83, 4317. |
[13] | Tzeremes G.; Rasmussen K.Ø.; Lookman T.; Saxena A. Phys. Rev. E 2002, 65, 041806. |
[14] | Rasmussen K.Ø.; Kalosakas G J. Polym. Sci. Part B: Polym. Phys. 2002, 40, 1777. |
[15] | Xie N.; Liu M.J.; Deng H.L.; Li W.H.; Qiu F.; Shi A.C. J. Am. Chem. Soc. 2014, 136, 2974. |
[16] | Qiang Y.C.; Li W.H. Macromolecules 2020, 53, 9943. |
[17] | Xu Y.C.; Li W.H.; Qiu F.; Yang Y.L.; Shi A.C. J. Phys. Chem. B 2010, 114, 14875. |
[18] | Li W.H.; Qiu F.; Shi A.C. Macromolecules 2012, 45, 503. |
[19] | Liu M.J.; Li W.H.; Qiu F.; Shi A.C. Macromolecules 2012, 45, 9522. |
[20] | Xie N.; Li W.H.; Qiu F.; Shi A.C. ACS Macro Lett. 2014, 3, 906. |
[21] | Xia B.K.; Li W.H.; Qiu F. Acta Chim. Sinica 2014, 72, 30. (in Chinese) |
[21] | 夏彬凯, 李卫华, 邱枫, 化学学报, 2014, 72, 30. |
[22] | Xia Y.M.; Li W.H. Polymer 2019, 166, 21. |
[23] | Shao Z.W.; Zhang D.; Hu W.G.; Xu Y.C.; Li W.H. Polymer 2019, 177, 202. |
[24] | Xie N.; Liu M.J.; Deng H.L.; Li W.H.; Qiu F.; Shi A.C. J. Am. Chem. Soc. 2014, 136, 2974. |
[25] | Duan C.; Zhao M.T.; Qiang Y.C.; Chen L.; Li W.H.; Qiu F.; Shi A.C. Macromolecules 2018, 51, 7713. |
[26] | Miyamori Y.; Suzuki J.; Takano A.; Matsushita Y. ACS Macro Lett. 2020, 9, 32. |
[27] | Liu M.J.; Qiang Y.C.; Li W.H.; Qiu F.; Shi A.C. ACS Macro Lett. 2016, 5, 1167. |
[28] | Lindsay A.P.; Lewis R.M.; Lee B.; Peterson A.J.; Lodge T.P.; Bates F.S. ACS Macro Lett. 2020, 9, 197. |
[29] | Zhao B.; Jiang W.B.; Chen L.; Li W.H.; Qiu F.; Shi A.C. ACS Macro Lett. 2018, 7, 95. |
[30] | Ahn S.; Kim J.K.; Zhao B.; Duan C.; Li W.H. Macromolecules 2018, 51, 4415. |
[31] | Ahn S.; Seo Y.; Kim J.K.; Duan C.; Zhang L.X.; Li W.H. Macromolecules 2019, 52, 9039. |
[32] | Zhao M.T.; Li W.H. Macromolecules 2019, 52, 1832. |
[33] | Müller A.J.; Lindsay A.P.; Jayaraman A.; Lodge T.P.; Mhanthappa M.K.; Bates F.S. ACS Macro Lett. 2020, 9, 576. |
[34] | Matsen M.W. J. Phys.: Condens. Matter 2002, 14, R21. |
[35] | Gao Y.; Deng H.L.; Li W.H.; Qiu F.; Shi A.C. Phys. Rev. Lett. 2016, 116, 068304. |
[36] | Li W.H.; Duan C.; Shi A.C. ACS Macro Lett. 2017, 6, 1257. |
[37] | Jiang W.B.; Qiang Y.C.; Li W.H.; Qiu F.; Shi A.C. Macromolecules 2018, 51, 1529. |
[38] | Xie Q.; Qiang Y.C.; Li W.H. ACS Macro Lett. 2020, 9, 278. |
[39] | Matsen M.W.; Thompson R.B. J. Chem. Phys. 1999, 111, 7139. |
[40] | Hermel T.J.; Hahn S.F.; Chaffin K.A.; Gerberich W.W.; Bates F.S. Macromolecules 2003, 36, 2190. |
[41] | Fleury G.; Bates F.S. Macromolecules 2009, 42, 3598. |
[42] | Bates F.S.; Fredrickson G.H. Phys. Today 1999, 52, 32. |
[43] | Qin J.; Bates F.S.; Morse D.C. Macromolecules 2010, 43, 5128. |
[44] | Spencer R.K.W.; Matsen M.W. Macromolecules 2017, 50, 1681. |
[45] | Xie Q.; Qiang Y.C.; Chen L.; Xia Y.M.; Li W.H. ACS Macro Lett. 2020, 9, 980. |
[46] | Schulze M.W.; Lewis R.M.; Lettow J.H.; Hickey R.J.; Gillard T.M.; Hillmyer M.A.; Bates F.S. Phys. Rev. Lett. 2017, 118, 207801. |
[47] | Lindsay A.P.; Lewis R.M.; Lee B.; Peterson A.J.; Lodge T.P.; Bates F.S. ACS Macro Lett. 2020, 9, 197. |
[48] | Miyamori Y.; Suzuki J.; Takano A.; Matsushita Y. ACS Macro Lett. 2020, 9, 32. |
/
〈 |
|
〉 |