Article

Crystal-Melt Interface Kinetics and the Capillary Wave Dynamics of the Monolayer Confined Ice-Water Coexistence Lines

  • Zun Liang ,
  • Xin Zhang ,
  • Songtai Lv ,
  • Hongtao Liang ,
  • Yang Yang
Expand
  • a School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-09-13

  Online published: 2020-11-24

Supported by

the National Natural Science Foundation of China(11874147); the Fundamental Research Funds for the Central Universities, and East China Normal University Multifunctional Platform for Innovation(001)

Abstract

The ice-water interface's kinetics has long been paid much attention because of its central role in ice nucleation, growth and surface/interface melting. However, there exist few studies focused on the kinetics of the confined ice-water interface. In this paper, we employ the equilibrium molecular dynamics simulation and the phase equilibrium technique for the confined water and ice to study the 1D crystal-melt coexistence line of an equilibrium mono-layer ice-water coexistence system, described by two well-known water molecule models, i.e., constant dipole moment TIP4P/2005 model and polarizable SWM4-NDP water model. The mono-layer ice-water phase equilibria are confined in the hydrophobic slab pore of 0.65 nm, under 0.5 GPa lateral pressure. By tracking the 1D ice-water coexistence line's position, we calculate the power spectrum of the equilibrium line fluctuation and the time-dependent autocorrelation function of the line fluctuation Fourier amplitudes and then calculate a series of kinetic properties of the 1D crystal-melt coexistence line. We demonstrate that the processes involved in the relaxation of the crystal-melt coexistence line fluctuation with long wavelengths are coupled with a fast and a slow decay process characterized by two distinct time scales, while just the slow decay processes dominate the crystal-melt coexistence line fluctuation with short wavelengths. By comparing with bulk ice-water interface systems, we find that the high-frequency processes such as Rayleigh waves participate more in the relaxation of the 1D crystal-melt coexistence line fluctuation. We see that the wave vector dependence of the characteristic relaxation time (of the crystal-melt line fluctuation) is consistent with the crystal-melt interface's existing kinetic theory. Nevertheless, the characteristic relaxation time of the 1D crystal-melt coexistence line relaxation is around one order of magnitude lower than that of the 2D bulk ice-water interface system. We calculate the kinetic coefficients of the 1D crystal-melt coexistence line for the two water model systems, compare with the bulk interface systems, and find the kinetic coefficient of the confined ice-water (crystal-melt) coexistence line is much higher than that of the bulk ice-water interface system. The significant increase in the magnitude of the kinetic coefficient of the confined 1D ice-water coexistence line system may be understood by the substantial suppression of the rotational degree of freedom of the confined water molecules. The current achievement of the fundamental insight and simulation results could potentially facilitate the theoretical advancements in designing new devices of ultrafast phase-change (energy storage, sensor) devices based on confined water systems.

Cite this article

Zun Liang , Xin Zhang , Songtai Lv , Hongtao Liang , Yang Yang . Crystal-Melt Interface Kinetics and the Capillary Wave Dynamics of the Monolayer Confined Ice-Water Coexistence Lines[J]. Acta Chimica Sinica, 2021 , 79(1) : 108 -118 . DOI: 10.6023/A20090423

References

[1]
Llombart, P.; Noya, E.G.; MacDowell, L.G. Sci. Adv. 2020, 6, eaay9322.
[2]
Benet, J.; Llombart, P.; Sanz, E.; MacDowell, L.G. Phys. Rev. Lett. 2016, 117, 096101.
[3]
Fitzner, M.; Sosso, G.C.; Cox, S.J.; Michaelides, A. PNAS 2019, 116, 2009.
[4]
Karma, A. Phys. Rev. E 1993, 48, 3441.
[5]
Karma, A. Phys. Rev. Lett. 1993, 70, 3439.
[6]
Hoyt, J.J.; Asta, M.; Karma, A. Interface Sci. 2002, 10, 181.
[7]
Hoyt, J.J.; Asta, M.; Karma, A. Phys. Rev. Lett. 2001, 86, 5530.
[8]
Amini, M.; Laird, B.B. Phys. Rev. Lett. 2006, 97, 216102.
[9]
Hoyt, J.; Asta, M.; Karma, A. Mater. Sci. Eng. R Rep. 2003, 41, 121.
[10]
Benet, J.; MacDowell, L.G.; Sanz, E. J. Chem. Phys. 2014, 141, 034701.
[11]
Ambler, M.; Vorselaars, B.; Allen, M.P.; Quigley, D. J. Chem. Phys. 2017, 146, 074701.
[12]
Landau, L.D.; Lifshitz, E.M. Teori?a de la elasticidad, Vol.7, Academia de Ciencias, Reverté, Barcelona, 1969 .
[13]
Sanchez, M.A.; Kling, T.; Ishiyama, T.; van Zadel, M.J.; Bisson, P.J.; Mezger, M.; Jochum, M.N.; Cyran, J.D.; Smit, W.J.; Bakker, H.J.; Shultz, M.J.; Morita, A.; Donadio, D.; Nagata, Y.; Bonn, M.; Backus, E.H. PNAS 2017, 114, 227.
[14]
Murata, K.I.; Nagashima, K.; Sazaki, G. Phys. Rev. Lett. 2019, 122, 026102.
[15]
Algara-Siller, G.; Lehtinen, O.; Wang, F.C.; Nair, R.R.; Kaiser, U.; Wu, H.A.; Geim, A.K.; Grigorieva, I.V. Nature 2015, 519, 443.
[16]
Jeong, H.C.; Williams, E.D. Surf. Sci. Rep. 1999, 34, 171.
[17]
Bartelt, N.C.; Tromp, R.M. Phys. Rev. B 1996, 54, 11731.
[18]
Bartelt, N.C.; Goldberg, J.L.; Einstein, T.L.; Williams, E.D.; Heyraud, J.C.; Métois, J.J. Phys. Rev. B 1993, 48, 15453.
[19]
Zhu, Y.B.; Wang, F.C.; Wu, H.A. J. Chem. Phys. 2017, 147, 044706.
[20]
Granick, S. Science 1991, 253, 1374.
[21]
Fang, H.P. Acta Phys. Sin. 2016, 65, 186101 . (in Chinese)
[21]
方海平, 物理学报, 2016, 65, 186101.
[22]
Sun, Y.R.; Yu, F.; Ma, J. Acta Phys.-Chim. Sin. 2017, 33, 2173 . (in Chinese)
[22]
孙怡然, 于飞, 马杰, 物理化学学报, 2017, 33, 2173.
[23]
Wang, J.; Zhu, Y.; Zhou, J.; Lu, X.H. Acta Chim. Sinica 2003, 61, 1891 . (in Chinese)
[23]
王俊, 朱宇, 周健, 陆小华, 化学学报, 2003, 61, 1891.
[24]
Fang, H.P. Physics 2011, 40, 311 . (in Chinese)
[24]
方海平, 物理, 2011, 40, 311.
[25]
Wang, F.C.; Sun, C.Q.; Wu, H.A. Chin. Sci. Bull. 2017, 62, 1111 . (in Chinese)
[25]
王奉超, 孙长庆, 吴恒安, 科学通报, 2017, 62, 1111.
[26]
Wang, F.C.; Zhu, Y.B.; Wu, H.A. Sci-Phys Mech Astron 2018, 48, 094609 . (in Chinese)
[26]
王奉超, 朱银波, 吴恒安, 中国科学: 物理学力学天文学, 2018, 48, 094609.
[27]
Nan, Y.L.; Kong, X.; Li, J.P.; Lu, D.N. CIESC J. 2017, 68, 1786 . (in Chinese)
[27]
南怡伶, 孔宪, 李继鹏, 卢滇楠, 化工学报, 2017, 68, 1786.
[28]
Fan, Q.; Liang, H.T.; Xu, X.Q.; Lv, S.T.; Liang, Z.; Yang, Y. Acta Chim. Sinica 2020, 78, 547 . (in Chinese)
[28]
范勤, 梁洪涛, 许贤祺, 吕松泰, 梁尊, 杨洋, 化学学报, 2020, 78, 547.
[29]
Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.; Gomila, G.; Novoselov, K.S.; Geim, A.K. Science 2018, 360, 1339.
[30]
Du, H.; Liang, H.T.; Yang, Y. Acta Chim. Sinica 2018, 76, 483 . (in Chinese)
[30]
杜涵, 梁洪涛, 杨洋, 化学学报, 2018, 76, 483.
[31]
Abascal, J.L.; Sanz, E.; Garcia Fernandez, R.; Vega, C. J. Chem. Phys. 2005, 122, 234511.
[32]
Espinosa, J.R.; Vega, C.; Sanz, E. J. Phys. Chem. C 2016, 120, 8068.
[33]
Lamoureux, G.; Harder, E.; Vorobyov, I.V.; Roux, B.; MacKerell, A.D. Chem. Phys. Lett. 2006, 418, 245.
[34]
Magda, J.J.; Tirrell, M.; Davis, H.T. J. Chem. Phys. 1986, 84, 2901.
[35]
Plimpton, S. J. Comput. Phys. 1995, 117, 1.
[36]
Hockney, R.W.; Eastwood, J.W. Computer simulation using particles, CRC Press, U.S. , 1988, p. 55.
[37]
Yeh, I.C.; Berkowitz, M.L. J. Chem. Phys. 1999, 111, 3155.
[38]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. J. Comput. Phys. 1977, 23, 327.
[39]
Jiang, W.; Hardy, D.J.; Phillips, J.C.; Mackerell, A.D.; Schulten, K.; Roux, B. J. Phys. Chem. Lett. 2011, 2, 87.
[40]
Davidchack, R.L.; Laird, B.B. Phys. Rev. Lett. 2000, 85, 4751.
[41]
Broughton, J.Q.; Gilmer, G.H. J. Chem. Phys. 1986, 84, 5759.
[42]
Broughton, J.Q.; Gilmer, G.H. J. Chem. Phys. 1986, 84, 5749.
[43]
Fisher, M.P.A.; Fisher, D.S.; Weeks, J.D. Phys. Rev. Lett. 1982, 48, 368.
[44]
Wang, F.C.; Wu, H.A.; Geim, A.K. Nature 2015, 528, E3.
[45]
Chacón, E.; Fernández, E.M.; Duque, D.; Delgado-Buscalioni, R.; Tarazona, P. Phys. Rev. B 2009, 80, 195403.
[46]
Delgado-Buscalioni, R.; Chacon, E.; Tarazona, P. Phys. Rev. Lett. 2008, 101, 106102.
[47]
Liang, H.T.; Laird, B.B.; Asta, M.; Yang, Y. Acta Mater. 2018, 143, 329.
[48]
Morris, J.R. Phys. Rev. B 2002, 66, 144104.
[49]
Frolov, T.; Asta, M. J. Chem. Phys. 2012, 137, 214108.
[50]
Mahynski, N.A.; Shen, V.K. J. Chem. Phys. 2017, 146, 044706.
[51]
Chen, J.; Schusteritsch, G.; Pickard, C.J.; Salzmann, C.G.; Michaelides, A. Phys. Rev. Lett. 2016, 116, 025501.
[52]
Freitas, R.; Frolov, T.; Asta, M. Phys. Rev. E 2017, 96, 043308.
[53]
Monk, J.; Yang, Y.; Mendelev, M.I.; Asta, M.; Hoyt, J.J.; Sun, D.Y. Model. Simul. Mater. Sci. Eng. 2010, 18, 015004.
[54]
Amini, M.; Laird, B.B. Phys. Rev. Lett. 2006, 97, 216102.
[55]
Wu, K.A.; Wang, C.H.; Hoyt, J.J.; Karma, A. Phys. Rev. B 2015, 91, 014107.
[56]
Huitema, H.E.A.; Vlot, M.J.; van der Eerden, J.P. J. Chem. Phys. 1999, 111, 4714.
[57]
Gao, Y.F.; Yang, Y.; Sun, D.Y.; Asta, M.; Hoyt, J.J. J. Cryst. Growth 2010, 312, 3238.
[58]
Mendelev, M.I.; Rahman, M.J.; Hoyt, J.J.; Asta, M. Model. Simul. Mater. Sci. Eng. 2010, 18, 074002.
[59]
Murata, K.; Nagashima, K.; Sazaki, G. Phys. Rev. Lett. 2019, 122, 026102.
[60]
Tazi, S.; Botan, A.; Salanne, M.; Marry, V.; Turq, P.; Rotenberg, B. J. Phys. Condens. Matter 2012, 24, 284117.
[61]
Yeh, I.-C.; Hummer, G. J. Phys. Chem. B 2004, 108, 15873.
[62]
Yang, P.L.; Wang, Z.X.; Liang, Z.; Liang, H.T.; Yang, Y. Acta Chim. Sinica 2019, 77, 1045 . (in Chinese)
[62]
杨鹏里, 王振兴, 梁尊, 梁洪涛, 杨洋, 化学学报, 2019, 77, 1045.
[63]
Xu, X.Q.; Laird, B.B.; Hoyt, J.J.; Asta, M.; Yang, Y. Cryst. Growth Des. 2020, 20, 7862.
[64]
Kathmann, S.M.; Kuo, I.W.; Mundy, C.J. J. Am. Chem. Soc. 2008, 130, 16556.
Outlines

/